|
import gradio as gr |
|
from llama_cpp import Llama |
|
|
|
llm = Llama( |
|
model_path="AstroSage-8B-Q8_0.gguf", |
|
n_ctx=2048, |
|
n_threads=4, |
|
seed=42, |
|
f16_kv=True, |
|
logits_all=False, |
|
use_mmap=True, |
|
use_gpu=True |
|
) |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] |
|
for user_msg, assistant_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = llm.generate_chat( |
|
messages, |
|
max_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p |
|
) |
|
|
|
return response |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Assume the role of AstroSage, a helpful chatbot designed to answer user queries about astronomy, astrophysics, and cosmology.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |