import os import torch import gradio as gr from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from huggingface_hub import InferenceClient # Environment variables os.environ["TOKENIZERS_PARALLELISM"] = "0" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" # os.environ["GRADIO_CACHE_DIR"] = "/home/jwy4/gradio_cache" # Initialize Hugging Face Inference Client client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Load model and tokenizer (if you want to use a local model, uncomment and use the load_model_and_tokenizer function) model = None tokenizer = None def load_model_and_tokenizer(model_name, dtype, kv_bits): global model, tokenizer if model is None or tokenizer is None: tokenizer = AutoTokenizer.from_pretrained(model_name) special_tokens = {"pad_token": ""} tokenizer.add_special_tokens(special_tokens) config = AutoConfig.from_pretrained(model_name) if kv_bits != "unquantized": quantizer_path = f"codebooks/{model_name.split('/')[-1]}_{kv_bits}bit.xmad" setattr(config, "quantizer_path", quantizer_path) dtype = torch.__dict__.get(dtype, torch.float32) model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=dtype, device_map="auto") if len(tokenizer) > model.get_input_embeddings().weight.shape[0]: model.resize_token_embeddings(len(tokenizer)) tokenizer.padding_side = "left" model.config.pad_token_id = tokenizer.pad_token_id return model, tokenizer def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Initialize Gradio ChatInterface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], theme="default", title="1bit llama3 by xMAD.ai", description="The first industrial level 1 bit quantization Llama3, we can achieve 800 tokens per second on NVIDIA V100 adn 1200 on NVIDIA A100, 90%% cost down of your cloud hostin cost", css=".scrollable { height: 400px; overflow-y: auto; padding: 10px; border: 1px solid #ccc; }" ) if __name__ == "__main__": # Uncomment if using local model loading # load_model_and_tokenizer("NousResearch/Meta-Llama-3-8B-Instruct", "fp16", "1") demo.launch()