# coding=utf-8 # Copyright 2022 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_bitsandbytes_available, is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, torch_device, ) def get_some_linear_layer(model): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc elif model.config.model_type == "opt": try: return model.decoder.layers[0].fc1 except AttributeError: # for AutoModelforCausalLM return model.model.decoder.layers[0].fc1 else: return model.transformer.h[0].mlp.dense_4h_to_h if is_torch_available(): import torch import torch.nn as nn class LoRALayer(nn.Module): """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" def __init__(self, module: nn.Module, rank: int): super().__init__() self.module = module self.adapter = nn.Sequential( nn.Linear(module.in_features, rank, bias=False), nn.Linear(rank, module.out_features, bias=False), ) small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=small_std) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def forward(self, input, *args, **kwargs): return self.module(input, *args, **kwargs) + self.adapter(input) if is_bitsandbytes_available(): import bitsandbytes as bnb @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class Base4bitTest(unittest.TestCase): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module model_name = "bigscience/bloom-1b7" # Constant values EXPECTED_RELATIVE_DIFFERENCE = ( 2.109659552692574 # This was obtained on a RTX Titan so the number might slightly change ) input_text = "Hello my name is" EXPECTED_OUTPUTS = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n") EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University") MAX_NEW_TOKENS = 10 def setUp(self): # Models and tokenizer self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) class Bnb4BitTest(Base4bitTest): def setUp(self): super().setUp() # Models and tokenizer self.model_fp16 = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float16, device_map="auto" ) self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.model_fp16 del self.model_4bit gc.collect() torch.cuda.empty_cache() def test_quantization_num_parameters(self): r""" Test if the number of returned parameters is correct See: https://github.com/huggingface/transformers/issues/25978 """ num_params_4bit = self.model_4bit.num_parameters() num_params_fp16 = self.model_fp16.num_parameters() self.assertEqual(num_params_4bit, num_params_fp16) def test_quantization_config_json_serialization(self): r""" A simple test to check if the quantization config is correctly serialized and deserialized """ config = self.model_4bit.config self.assertTrue(hasattr(config, "quantization_config")) _ = config.to_dict() _ = config.to_diff_dict() _ = config.to_json_string() def test_memory_footprint(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from bitsandbytes.nn import Params4bit mem_fp16 = self.model_fp16.get_memory_footprint() mem_4bit = self.model_4bit.get_memory_footprint() self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE) linear = get_some_linear_layer(self.model_4bit) self.assertTrue(linear.weight.__class__ == Params4bit) def test_original_dtype(self): r""" A simple test to check if the model succesfully stores the original dtype """ self.assertTrue(hasattr(self.model_4bit.config, "_pre_quantization_dtype")) self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) self.assertTrue(self.model_4bit.config._pre_quantization_dtype == torch.float16) def test_linear_are_4bit(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ from transformers import T5PreTrainedModel self.model_fp16.get_memory_footprint() self.model_4bit.get_memory_footprint() for name, module in self.model_4bit.named_modules(): if isinstance(module, torch.nn.Linear): if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uint8) def test_rwkv_4bit(self): r""" A simple test to check if 4-bit RWKV inference works as expected. """ model_id = "RWKV/rwkv-4-169m-pile" quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) tok = AutoTokenizer.from_pretrained(model_id) text = "Hello my name is" input_ids = tok.encode(text, return_tensors="pt").to(0) _ = model.generate(input_ids, max_new_tokens=30) def test_generate_quality(self): r""" Test the generation quality of the quantized model and see that we are matching the expected output. Given that we are operating on small numbers + the testing model is relatively small, we might not get the same output across GPUs. So we'll generate few tokens (5-10) and check their output. """ encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_generate_quality_config(self): r""" Test that loading the model with the config is equivalent """ bnb_config = BitsAndBytesConfig() bnb_config.load_in_4bit = True model_4bit_from_config = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=bnb_config, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt") output_sequences = model_4bit_from_config.generate( input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. Checks also if other models are casted correctly. """ with self.assertRaises(ValueError): # Tries with `str` self.model_4bit.to("cpu") with self.assertRaises(ValueError): # Tries with a `dtype`` self.model_4bit.to(torch.float16) with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.to(torch.device("cuda:0")) with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.float() with self.assertRaises(ValueError): # Tries with a `device` self.model_4bit.half() # Test if we did not break anything encoded_input = self.tokenizer(self.input_text, return_tensors="pt") self.model_fp16 = self.model_fp16.to(torch.float32) _ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) # Check this does not throw an error _ = self.model_fp16.to("cpu") # Check this does not throw an error _ = self.model_fp16.half() # Check this does not throw an error _ = self.model_fp16.float() def test_fp32_4bit_conversion(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. """ model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small", load_in_4bit=True, device_map="auto") self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class Bnb4BitT5Test(unittest.TestCase): @classmethod def setUpClass(cls): cls.model_name = "google-t5/t5-small" cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) cls.input_text = "Translate in German: Hello, my dog is cute" def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ gc.collect() torch.cuda.empty_cache() def test_inference_without_keep_in_fp32(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration modules = T5ForConditionalGeneration._keep_in_fp32_modules T5ForConditionalGeneration._keep_in_fp32_modules = None # test with `google-t5/t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_4bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) T5ForConditionalGeneration._keep_in_fp32_modules = modules def test_inference_with_keep_in_fp32(self): r""" Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly. `flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test both cases. """ from transformers import T5ForConditionalGeneration # test with `google-t5/t5-small` model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit)) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) # test with `flan-t5-small` model = T5ForConditionalGeneration.from_pretrained( self.dense_act_model_name, load_in_4bit=True, device_map="auto" ) encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) _ = model.generate(**encoded_input) class Classes4BitModelTest(Base4bitTest): def setUp(self): super().setUp() # model_name self.model_name = "bigscience/bloom-560m" self.seq_to_seq_name = "google-t5/t5-small" # Different types of model self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # Sequence classification model self.sequence_model = AutoModelForSequenceClassification.from_pretrained( self.model_name, load_in_4bit=True, device_map="auto" ) # CausalLM model self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto") # Seq2seq model self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( self.seq_to_seq_name, load_in_4bit=True, device_map="auto" ) def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.base_model del self.sequence_model del self.model_4bit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def test_correct_head_class(self): r""" A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) are kept in their native class. """ from bitsandbytes.nn import Params4bit self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit) # Other heads should be nn.Parameter self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class Pipeline4BitTest(Base4bitTest): def setUp(self): super().setUp() def tearDown(self): r""" TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 """ del self.pipe gc.collect() torch.cuda.empty_cache() def test_pipeline(self): r""" The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything on pipline. """ # self._clear_cuda_cache() self.pipe = pipeline( "text-generation", model=self.model_name, model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16}, max_new_tokens=self.MAX_NEW_TOKENS, ) # Real second forward pass pipeline_output = self.pipe(self.input_text) self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class Bnb4bitTestMultiGpu(Base4bitTest): def setUp(self): super().setUp() def test_multi_gpu_loading(self): r""" This tests that the model has been loaded and can be used correctly on a multi-GPU setup. Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice """ model_parallel = AutoModelForCausalLM.from_pretrained( self.model_name, load_in_4bit=True, device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) # Check that inference pass works on the model encoded_input = self.tokenizer(self.input_text, return_tensors="pt") # Second real batch output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) class Bnb4BitTestTraining(Base4bitTest): def setUp(self): self.model_name = "facebook/opt-350m" super().setUp() def test_training(self): if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"): return # Step 1: freeze all parameters model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True) self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()}) for param in model.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(module)): module.q_proj = LoRALayer(module.q_proj, rank=16) module.k_proj = LoRALayer(module.k_proj, rank=16) module.v_proj = LoRALayer(module.v_proj, rank=16) # Step 3: dummy batch batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): out = model.forward(**batch) out.logits.norm().backward() for module in model.modules(): if isinstance(module, LoRALayer): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(module, nn.Embedding): self.assertTrue(module.weight.grad is None) class Bnb4BitGPT2Test(Bnb4BitTest): model_name = "openai-community/gpt2-xl" EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187 @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class BaseSerializationTest(unittest.TestCase): model_name = "facebook/opt-125m" input_text = "Mars colonists' favorite meals are" def tearDown(self): gc.collect() torch.cuda.empty_cache() def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True): r""" Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default. See ExtendedSerializationTest class for more params combinations. """ tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type=quant_type, bnb_4bit_use_double_quant=double_quant, bnb_4bit_compute_dtype=torch.bfloat16, ) model_0 = AutoModelForCausalLM.from_pretrained( self.model_name, quantization_config=self.quantization_config, device_map=torch_device, ) with tempfile.TemporaryDirectory() as tmpdirname: model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization) config = AutoConfig.from_pretrained(tmpdirname) self.assertTrue(hasattr(config, "quantization_config")) model_1 = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device) # checking quantized linear module weight linear = get_some_linear_layer(model_1) self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit) self.assertTrue(hasattr(linear.weight, "quant_state")) self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState) # checking memory footpring self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2) # Matching all parameters and their quant_state items: d0 = dict(model_0.named_parameters()) d1 = dict(model_1.named_parameters()) self.assertTrue(d0.keys() == d1.keys()) for k in d0.keys(): self.assertTrue(d0[k].shape == d1[k].shape) self.assertTrue(d0[k].device.type == d1[k].device.type) self.assertTrue(d0[k].device == d1[k].device) self.assertTrue(d0[k].dtype == d1[k].dtype) self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device))) if isinstance(d0[k], bnb.nn.modules.Params4bit): for v0, v1 in zip( d0[k].quant_state.as_dict().values(), d1[k].quant_state.as_dict().values(), ): if isinstance(v0, torch.Tensor): self.assertTrue(torch.equal(v0, v1.to(v0.device))) else: self.assertTrue(v0 == v1) # comparing forward() outputs encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) out_0 = model_0(**encoded_input) out_1 = model_1(**encoded_input) self.assertTrue(torch.equal(out_0["logits"], out_1["logits"])) # comparing generate() outputs encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device) output_sequences_0 = model_0.generate(**encoded_input, max_new_tokens=10) output_sequences_1 = model_1.generate(**encoded_input, max_new_tokens=10) def _decode(token): return tokenizer.decode(token, skip_special_tokens=True) self.assertEqual( [_decode(x) for x in output_sequences_0], [_decode(x) for x in output_sequences_1], ) class ExtendedSerializationTest(BaseSerializationTest): """ tests more combinations of parameters """ def test_nf4_single_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False) def test_nf4_single_safe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True) def test_nf4_double_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False) # nf4 double safetensors quantization is tested in test_serialization() method from the parent class def test_fp4_single_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False) def test_fp4_single_safe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True) def test_fp4_double_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False) def test_fp4_double_safe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True) class BloomSerializationTest(BaseSerializationTest): """ default BaseSerializationTest config tested with Bloom family model """ model_name = "bigscience/bloom-560m" class GPTSerializationTest(BaseSerializationTest): """ default BaseSerializationTest config tested with GPT family model """ model_name = "openai-community/gpt2-xl" @require_bitsandbytes @require_accelerate @require_torch_gpu @slow class Bnb4BitTestBasicConfigTest(unittest.TestCase): def test_load_in_4_and_8_bit_fails(self): with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): AutoModelForCausalLM.from_pretrained("facebook/opt-125m", load_in_4bit=True, load_in_8bit=True) def test_set_load_in_8_bit(self): quantization_config = BitsAndBytesConfig(load_in_4bit=True) with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"): quantization_config.load_in_8bit = True