File size: 30,737 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
#!/usr/bin/env python
# coding=utf-8

# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.util
import json
import os
import time
from dataclasses import dataclass
from typing import Dict

import requests
from huggingface_hub import HfFolder, hf_hub_download, list_spaces

from ..models.auto import AutoTokenizer
from ..utils import is_offline_mode, is_openai_available, is_torch_available, logging
from .base import TASK_MAPPING, TOOL_CONFIG_FILE, Tool, load_tool, supports_remote
from .prompts import CHAT_MESSAGE_PROMPT, download_prompt
from .python_interpreter import evaluate


logger = logging.get_logger(__name__)


if is_openai_available():
    import openai

if is_torch_available():
    from ..generation import StoppingCriteria, StoppingCriteriaList
    from ..models.auto import AutoModelForCausalLM
else:
    StoppingCriteria = object

_tools_are_initialized = False


BASE_PYTHON_TOOLS = {
    "print": print,
    "range": range,
    "float": float,
    "int": int,
    "bool": bool,
    "str": str,
}


@dataclass
class PreTool:
    task: str
    description: str
    repo_id: str


HUGGINGFACE_DEFAULT_TOOLS = {}


HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB = [
    "image-transformation",
    "text-download",
    "text-to-image",
    "text-to-video",
]


def get_remote_tools(organization="huggingface-tools"):
    if is_offline_mode():
        logger.info("You are in offline mode, so remote tools are not available.")
        return {}

    spaces = list_spaces(author=organization)
    tools = {}
    for space_info in spaces:
        repo_id = space_info.id
        resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space")
        with open(resolved_config_file, encoding="utf-8") as reader:
            config = json.load(reader)

        task = repo_id.split("/")[-1]
        tools[config["name"]] = PreTool(task=task, description=config["description"], repo_id=repo_id)

    return tools


def _setup_default_tools():
    global HUGGINGFACE_DEFAULT_TOOLS
    global _tools_are_initialized

    if _tools_are_initialized:
        return

    main_module = importlib.import_module("transformers")
    tools_module = main_module.tools

    remote_tools = get_remote_tools()
    for task_name, tool_class_name in TASK_MAPPING.items():
        tool_class = getattr(tools_module, tool_class_name)
        description = tool_class.description
        HUGGINGFACE_DEFAULT_TOOLS[tool_class.name] = PreTool(task=task_name, description=description, repo_id=None)

    if not is_offline_mode():
        for task_name in HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB:
            found = False
            for tool_name, tool in remote_tools.items():
                if tool.task == task_name:
                    HUGGINGFACE_DEFAULT_TOOLS[tool_name] = tool
                    found = True
                    break

            if not found:
                raise ValueError(f"{task_name} is not implemented on the Hub.")

    _tools_are_initialized = True


def resolve_tools(code, toolbox, remote=False, cached_tools=None):
    if cached_tools is None:
        resolved_tools = BASE_PYTHON_TOOLS.copy()
    else:
        resolved_tools = cached_tools
    for name, tool in toolbox.items():
        if name not in code or name in resolved_tools:
            continue

        if isinstance(tool, Tool):
            resolved_tools[name] = tool
        else:
            task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
            _remote = remote and supports_remote(task_or_repo_id)
            resolved_tools[name] = load_tool(task_or_repo_id, remote=_remote)

    return resolved_tools


def get_tool_creation_code(code, toolbox, remote=False):
    code_lines = ["from transformers import load_tool", ""]
    for name, tool in toolbox.items():
        if name not in code or isinstance(tool, Tool):
            continue

        task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
        line = f'{name} = load_tool("{task_or_repo_id}"'
        if remote:
            line += ", remote=True"
        line += ")"
        code_lines.append(line)

    return "\n".join(code_lines) + "\n"


def clean_code_for_chat(result):
    lines = result.split("\n")
    idx = 0
    while idx < len(lines) and not lines[idx].lstrip().startswith("```"):
        idx += 1
    explanation = "\n".join(lines[:idx]).strip()
    if idx == len(lines):
        return explanation, None

    idx += 1
    start_idx = idx
    while not lines[idx].lstrip().startswith("```"):
        idx += 1
    code = "\n".join(lines[start_idx:idx]).strip()

    return explanation, code


def clean_code_for_run(result):
    result = f"I will use the following {result}"
    explanation, code = result.split("Answer:")
    explanation = explanation.strip()
    code = code.strip()

    code_lines = code.split("\n")
    if code_lines[0] in ["```", "```py", "```python"]:
        code_lines = code_lines[1:]
    if code_lines[-1] == "```":
        code_lines = code_lines[:-1]
    code = "\n".join(code_lines)

    return explanation, code


class Agent:
    """
    Base class for all agents which contains the main API methods.

    Args:
        chat_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `chat_prompt_template.txt` in this repo in this case.
        run_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `run` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `run_prompt_template.txt` in this repo in this case.
        additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
            Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
            one of the default tools, that default tool will be overridden.
    """

    def __init__(self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None):
        _setup_default_tools()

        agent_name = self.__class__.__name__
        self.chat_prompt_template = download_prompt(chat_prompt_template, agent_name, mode="chat")
        self.run_prompt_template = download_prompt(run_prompt_template, agent_name, mode="run")
        self._toolbox = HUGGINGFACE_DEFAULT_TOOLS.copy()
        self.log = print
        if additional_tools is not None:
            if isinstance(additional_tools, (list, tuple)):
                additional_tools = {t.name: t for t in additional_tools}
            elif not isinstance(additional_tools, dict):
                additional_tools = {additional_tools.name: additional_tools}

            replacements = {name: tool for name, tool in additional_tools.items() if name in HUGGINGFACE_DEFAULT_TOOLS}
            self._toolbox.update(additional_tools)
            if len(replacements) > 1:
                names = "\n".join([f"- {n}: {t}" for n, t in replacements.items()])
                logger.warning(
                    f"The following tools have been replaced by the ones provided in `additional_tools`:\n{names}."
                )
            elif len(replacements) == 1:
                name = list(replacements.keys())[0]
                logger.warning(f"{name} has been replaced by {replacements[name]} as provided in `additional_tools`.")

        self.prepare_for_new_chat()

    @property
    def toolbox(self) -> Dict[str, Tool]:
        """Get all tool currently available to the agent"""
        return self._toolbox

    def format_prompt(self, task, chat_mode=False):
        description = "\n".join([f"- {name}: {tool.description}" for name, tool in self.toolbox.items()])
        if chat_mode:
            if self.chat_history is None:
                prompt = self.chat_prompt_template.replace("<<all_tools>>", description)
            else:
                prompt = self.chat_history
            prompt += CHAT_MESSAGE_PROMPT.replace("<<task>>", task)
        else:
            prompt = self.run_prompt_template.replace("<<all_tools>>", description)
            prompt = prompt.replace("<<prompt>>", task)
        return prompt

    def set_stream(self, streamer):
        """
        Set the function use to stream results (which is `print` by default).

        Args:
            streamer (`callable`): The function to call when streaming results from the LLM.
        """
        self.log = streamer

    def chat(self, task, *, return_code=False, remote=False, **kwargs):
        """
        Sends a new request to the agent in a chat. Will use the previous ones in its history.

        Args:
            task (`str`): The task to perform
            return_code (`bool`, *optional*, defaults to `False`):
                Whether to just return code and not evaluate it.
            remote (`bool`, *optional*, defaults to `False`):
                Whether or not to use remote tools (inference endpoints) instead of local ones.
            kwargs (additional keyword arguments, *optional*):
                Any keyword argument to send to the agent when evaluating the code.

        Example:

        ```py
        from transformers import HfAgent

        agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
        agent.chat("Draw me a picture of rivers and lakes")

        agent.chat("Transform the picture so that there is a rock in there")
        ```
        """
        prompt = self.format_prompt(task, chat_mode=True)
        result = self.generate_one(prompt, stop=["Human:", "====="])
        self.chat_history = prompt + result.strip() + "\n"
        explanation, code = clean_code_for_chat(result)

        self.log(f"==Explanation from the agent==\n{explanation}")

        if code is not None:
            self.log(f"\n\n==Code generated by the agent==\n{code}")
            if not return_code:
                self.log("\n\n==Result==")
                self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools)
                self.chat_state.update(kwargs)
                return evaluate(code, self.cached_tools, self.chat_state, chat_mode=True)
            else:
                tool_code = get_tool_creation_code(code, self.toolbox, remote=remote)
                return f"{tool_code}\n{code}"

    def prepare_for_new_chat(self):
        """
        Clears the history of prior calls to [`~Agent.chat`].
        """
        self.chat_history = None
        self.chat_state = {}
        self.cached_tools = None

    def clean_code_for_run(self, result):
        """
        Override this method if you want to change the way the code is
        cleaned for the `run` method.
        """
        return clean_code_for_run(result)

    def run(self, task, *, return_code=False, remote=False, **kwargs):
        """
        Sends a request to the agent.

        Args:
            task (`str`): The task to perform
            return_code (`bool`, *optional*, defaults to `False`):
                Whether to just return code and not evaluate it.
            remote (`bool`, *optional*, defaults to `False`):
                Whether or not to use remote tools (inference endpoints) instead of local ones.
            kwargs (additional keyword arguments, *optional*):
                Any keyword argument to send to the agent when evaluating the code.

        Example:

        ```py
        from transformers import HfAgent

        agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
        agent.run("Draw me a picture of rivers and lakes")
        ```
        """
        prompt = self.format_prompt(task)
        result = self.generate_one(prompt, stop=["Task:"])
        explanation, code = self.clean_code_for_run(result)

        self.log(f"==Explanation from the agent==\n{explanation}")

        self.log(f"\n\n==Code generated by the agent==\n{code}")
        if not return_code:
            self.log("\n\n==Result==")
            self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools)
            return evaluate(code, self.cached_tools, state=kwargs.copy())
        else:
            tool_code = get_tool_creation_code(code, self.toolbox, remote=remote)
            return f"{tool_code}\n{code}"

    def generate_one(self, prompt, stop):
        # This is the method to implement in your custom agent.
        raise NotImplementedError

    def generate_many(self, prompts, stop):
        # Override if you have a way to do batch generation faster than one by one
        return [self.generate_one(prompt, stop) for prompt in prompts]


class OpenAiAgent(Agent):
    """
    Agent that uses the openai API to generate code.

    <Tip warning={true}>

    The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like
    `"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version.

    </Tip>

    Args:
        model (`str`, *optional*, defaults to `"text-davinci-003"`):
            The name of the OpenAI model to use.
        api_key (`str`, *optional*):
            The API key to use. If unset, will look for the environment variable `"OPENAI_API_KEY"`.
        chat_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `chat_prompt_template.txt` in this repo in this case.
        run_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `run` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `run_prompt_template.txt` in this repo in this case.
        additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
            Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
            one of the default tools, that default tool will be overridden.

    Example:

    ```py
    from transformers import OpenAiAgent

    agent = OpenAiAgent(model="text-davinci-003", api_key=xxx)
    agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
    ```
    """

    def __init__(
        self,
        model="text-davinci-003",
        api_key=None,
        chat_prompt_template=None,
        run_prompt_template=None,
        additional_tools=None,
    ):
        if not is_openai_available():
            raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.")

        if api_key is None:
            api_key = os.environ.get("OPENAI_API_KEY", None)
        if api_key is None:
            raise ValueError(
                "You need an openai key to use `OpenAIAgent`. You can get one here: Get one here "
                "https://openai.com/api/`. If you have one, set it in your env with `os.environ['OPENAI_API_KEY'] = "
                "xxx."
            )
        else:
            openai.api_key = api_key
        self.model = model
        super().__init__(
            chat_prompt_template=chat_prompt_template,
            run_prompt_template=run_prompt_template,
            additional_tools=additional_tools,
        )

    def generate_many(self, prompts, stop):
        if "gpt" in self.model:
            return [self._chat_generate(prompt, stop) for prompt in prompts]
        else:
            return self._completion_generate(prompts, stop)

    def generate_one(self, prompt, stop):
        if "gpt" in self.model:
            return self._chat_generate(prompt, stop)
        else:
            return self._completion_generate([prompt], stop)[0]

    def _chat_generate(self, prompt, stop):
        result = openai.chat.completions.create(
            model=self.model,
            messages=[{"role": "user", "content": prompt}],
            temperature=0,
            stop=stop,
        )
        return result.choices[0].message.content

    def _completion_generate(self, prompts, stop):
        result = openai.Completion.create(
            model=self.model,
            prompt=prompts,
            temperature=0,
            stop=stop,
            max_tokens=200,
        )
        return [answer["text"] for answer in result["choices"]]


class AzureOpenAiAgent(Agent):
    """
    Agent that uses Azure OpenAI to generate code. See the [official
    documentation](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) to learn how to deploy an openAI
    model on Azure

    <Tip warning={true}>

    The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like
    `"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version.

    </Tip>

    Args:
        deployment_id (`str`):
            The name of the deployed Azure openAI model to use.
        api_key (`str`, *optional*):
            The API key to use. If unset, will look for the environment variable `"AZURE_OPENAI_API_KEY"`.
        resource_name (`str`, *optional*):
            The name of your Azure OpenAI Resource. If unset, will look for the environment variable
            `"AZURE_OPENAI_RESOURCE_NAME"`.
        api_version (`str`, *optional*, default to `"2022-12-01"`):
            The API version to use for this agent.
        is_chat_mode (`bool`, *optional*):
            Whether you are using a completion model or a chat model (see note above, chat models won't be as
            efficient). Will default to `gpt` being in the `deployment_id` or not.
        chat_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `chat_prompt_template.txt` in this repo in this case.
        run_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `run` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `run_prompt_template.txt` in this repo in this case.
        additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
            Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
            one of the default tools, that default tool will be overridden.

    Example:

    ```py
    from transformers import AzureOpenAiAgent

    agent = AzureAiAgent(deployment_id="Davinci-003", api_key=xxx, resource_name=yyy)
    agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
    ```
    """

    def __init__(
        self,
        deployment_id,
        api_key=None,
        resource_name=None,
        api_version="2022-12-01",
        is_chat_model=None,
        chat_prompt_template=None,
        run_prompt_template=None,
        additional_tools=None,
    ):
        if not is_openai_available():
            raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.")

        self.deployment_id = deployment_id
        openai.api_type = "azure"
        if api_key is None:
            api_key = os.environ.get("AZURE_OPENAI_API_KEY", None)
        if api_key is None:
            raise ValueError(
                "You need an Azure openAI key to use `AzureOpenAIAgent`. If you have one, set it in your env with "
                "`os.environ['AZURE_OPENAI_API_KEY'] = xxx."
            )
        else:
            openai.api_key = api_key
        if resource_name is None:
            resource_name = os.environ.get("AZURE_OPENAI_RESOURCE_NAME", None)
        if resource_name is None:
            raise ValueError(
                "You need a resource_name to use `AzureOpenAIAgent`. If you have one, set it in your env with "
                "`os.environ['AZURE_OPENAI_RESOURCE_NAME'] = xxx."
            )
        else:
            openai.api_base = f"https://{resource_name}.openai.azure.com"
        openai.api_version = api_version

        if is_chat_model is None:
            is_chat_model = "gpt" in deployment_id.lower()
        self.is_chat_model = is_chat_model

        super().__init__(
            chat_prompt_template=chat_prompt_template,
            run_prompt_template=run_prompt_template,
            additional_tools=additional_tools,
        )

    def generate_many(self, prompts, stop):
        if self.is_chat_model:
            return [self._chat_generate(prompt, stop) for prompt in prompts]
        else:
            return self._completion_generate(prompts, stop)

    def generate_one(self, prompt, stop):
        if self.is_chat_model:
            return self._chat_generate(prompt, stop)
        else:
            return self._completion_generate([prompt], stop)[0]

    def _chat_generate(self, prompt, stop):
        result = openai.ChatCompletion.create(
            engine=self.deployment_id,
            messages=[{"role": "user", "content": prompt}],
            temperature=0,
            stop=stop,
        )
        return result["choices"][0]["message"]["content"]

    def _completion_generate(self, prompts, stop):
        result = openai.Completion.create(
            engine=self.deployment_id,
            prompt=prompts,
            temperature=0,
            stop=stop,
            max_tokens=200,
        )
        return [answer["text"] for answer in result["choices"]]


class HfAgent(Agent):
    """
    Agent that uses an inference endpoint to generate code.

    Args:
        url_endpoint (`str`):
            The name of the url endpoint to use.
        token (`str`, *optional*):
            The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
            running `huggingface-cli login` (stored in `~/.huggingface`).
        chat_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `chat_prompt_template.txt` in this repo in this case.
        run_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `run` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `run_prompt_template.txt` in this repo in this case.
        additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
            Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
            one of the default tools, that default tool will be overridden.

    Example:

    ```py
    from transformers import HfAgent

    agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder")
    agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!")
    ```
    """

    def __init__(
        self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None
    ):
        self.url_endpoint = url_endpoint
        if token is None:
            self.token = f"Bearer {HfFolder().get_token()}"
        elif token.startswith("Bearer") or token.startswith("Basic"):
            self.token = token
        else:
            self.token = f"Bearer {token}"
        super().__init__(
            chat_prompt_template=chat_prompt_template,
            run_prompt_template=run_prompt_template,
            additional_tools=additional_tools,
        )

    def generate_one(self, prompt, stop):
        headers = {"Authorization": self.token}
        inputs = {
            "inputs": prompt,
            "parameters": {"max_new_tokens": 200, "return_full_text": False, "stop": stop},
        }

        response = requests.post(self.url_endpoint, json=inputs, headers=headers)
        if response.status_code == 429:
            logger.info("Getting rate-limited, waiting a tiny bit before trying again.")
            time.sleep(1)
            return self._generate_one(prompt)
        elif response.status_code != 200:
            raise ValueError(f"Error {response.status_code}: {response.json()}")

        result = response.json()[0]["generated_text"]
        # Inference API returns the stop sequence
        for stop_seq in stop:
            if result.endswith(stop_seq):
                return result[: -len(stop_seq)]
        return result


class LocalAgent(Agent):
    """
    Agent that uses a local model and tokenizer to generate code.

    Args:
        model ([`PreTrainedModel`]):
            The model to use for the agent.
        tokenizer ([`PreTrainedTokenizer`]):
            The tokenizer to use for the agent.
        chat_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `chat` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `chat_prompt_template.txt` in this repo in this case.
        run_prompt_template (`str`, *optional*):
            Pass along your own prompt if you want to override the default template for the `run` method. Can be the
            actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named
            `run_prompt_template.txt` in this repo in this case.
        additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*):
            Any additional tools to include on top of the default ones. If you pass along a tool with the same name as
            one of the default tools, that default tool will be overridden.

    Example:

    ```py
    import torch
    from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent

    checkpoint = "bigcode/starcoder"
    model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16)
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)

    agent = LocalAgent(model, tokenizer)
    agent.run("Draw me a picture of rivers and lakes.")
    ```
    """

    def __init__(self, model, tokenizer, chat_prompt_template=None, run_prompt_template=None, additional_tools=None):
        self.model = model
        self.tokenizer = tokenizer
        super().__init__(
            chat_prompt_template=chat_prompt_template,
            run_prompt_template=run_prompt_template,
            additional_tools=additional_tools,
        )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        """
        Convenience method to build a `LocalAgent` from a pretrained checkpoint.

        Args:
            pretrained_model_name_or_path (`str` or `os.PathLike`):
                The name of a repo on the Hub or a local path to a folder containing both model and tokenizer.
            kwargs (`Dict[str, Any]`, *optional*):
                Keyword arguments passed along to [`~PreTrainedModel.from_pretrained`].

        Example:

        ```py
        import torch
        from transformers import LocalAgent

        agent = LocalAgent.from_pretrained("bigcode/starcoder", device_map="auto", torch_dtype=torch.bfloat16)
        agent.run("Draw me a picture of rivers and lakes.")
        ```
        """
        model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **kwargs)
        tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
        return cls(model, tokenizer)

    @property
    def _model_device(self):
        if hasattr(self.model, "hf_device_map"):
            return list(self.model.hf_device_map.values())[0]
        for param in self.model.parameters():
            return param.device

    def generate_one(self, prompt, stop):
        encoded_inputs = self.tokenizer(prompt, return_tensors="pt").to(self._model_device)
        src_len = encoded_inputs["input_ids"].shape[1]
        stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(stop, self.tokenizer)])
        outputs = self.model.generate(
            encoded_inputs["input_ids"], max_new_tokens=200, stopping_criteria=stopping_criteria
        )

        result = self.tokenizer.decode(outputs[0].tolist()[src_len:])
        # Inference API returns the stop sequence
        for stop_seq in stop:
            if result.endswith(stop_seq):
                result = result[: -len(stop_seq)]
        return result


class StopSequenceCriteria(StoppingCriteria):
    """
    This class can be used to stop generation whenever a sequence of tokens is encountered.

    Args:
        stop_sequences (`str` or `List[str]`):
            The sequence (or list of sequences) on which to stop execution.
        tokenizer:
            The tokenizer used to decode the model outputs.
    """

    def __init__(self, stop_sequences, tokenizer):
        if isinstance(stop_sequences, str):
            stop_sequences = [stop_sequences]
        self.stop_sequences = stop_sequences
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        decoded_output = self.tokenizer.decode(input_ids.tolist()[0])
        return any(decoded_output.endswith(stop_sequence) for stop_sequence in self.stop_sequences)