import gradio as gr import random import time from ctransformers import AutoModelForCausalLM from dl_hf_model import dl_hf_model params = { "max_new_tokens":512, "stop":["" ,"<|endoftext|>","["], "temperature":0.7, "top_p":0.8, "stream":True, "batch_size": 8} #url = "https://huggingface.co/Aspik101/trurl-2-7b-GGML/blob/main/trurl-2-7b.ggmlv3.q8_0.bin" #model_loc, file_size = dl_hf_model(url) llm = AutoModelForCausalLM.from_pretrained("Aspik101/trurl-2-13b-GGML", model_type="llama") with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") def user(user_message, history): return "", history + [[user_message, None]] def parse_history(hist): history_ = "" for q, a in hist: history_ += f": {q } \n" if a: history_ += f": {a} \n" return history_ def bot(history): print("history: ",history) prompt = f"JesteÅ› AI assystentem. Odpowiadaj po polsku. {parse_history(history)}. :" print("prompt: ",prompt) stream = llm(prompt, **params) history[-1][1] = "" answer_save = "" for character in stream: history[-1][1] += character answer_save += character time.sleep(0.005) yield history print("answer_save: ",answer_save) msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() demo.launch()