import pandas as pd import ujson as json import gc import numpy as np from concurrent.futures import ProcessPoolExecutor import multiprocessing as mp from pymongo import MongoClient from collections import defaultdict from pathlib import Path # def read_json_parallel(file_path, num_workers=None): # """Read JSON file using parallel processing""" # if num_workers is None: # num_workers = max(1, mp.cpu_count() - 1) # print(f"Reading {file_path}...") # # Read chunks and concatenate them into a single DataFrame # df = pd.read_json(file_path, lines=True, dtype_backend="pyarrow", chunksize=100000) # return next(df) def read_data_mongo(file_path, num_workers=None): """Read JSON file using parallel processing""" if num_workers is None: num_workers = max(1, mp.cpu_count() - 1) print(f"Reading {file_path}...") conn_str = "mongodb://Mtalha:Test123@54.87.227.193/" client = MongoClient(conn_str) databases = client.list_database_names() db_client=client["Yelp"] # Read the entire file at once since chunksize isn't needed for parallel reading here # Use 'records' orient if your JSON was saved with this format try: collection = db_client[file_path] documents = collection.find({}, {"_id": 0}) data = list(documents) final_dict=defaultdict(list) for dictt in data: for k,v in dictt.items(): final_dict[k].append(v) df=pd.DataFrame(final_dict) # df = pd.read_json(file_path, orient='records', dtype_backend="pyarrow") except Exception as e: # If 'records' doesn't work, try without specifying orient or with 'split' # This is a fallback for different JSON structures # df = pd.read_json(file_path, dtype_backend="pyarrow") print("ERROR WHILE READING FILES FORM MONGODB AS : ",e) print(f"Finished reading. DataFrame shape: {df.shape}") return df def process_datasets(output_path,filename): # File paths file_paths = { 'business': "yelp_academic_dataset_business", 'checkin': "yelp_academic_dataset_checkin", 'review': "yelp_academic_dataset_review", 'tip': "yelp_academic_dataset_tip", 'user': "yelp_academic_dataset_user", 'google': "google_review_dataset" } # Read datasets with progress tracking print("Reading datasets...") dfs = {} for name, path in file_paths.items(): print(f"Processing {name} dataset...") dfs[name] = read_data_mongo(path) print(f"Finished reading {name} dataset. Shape: {dfs[name].shape}") print("All files read. Starting column renaming...") # Rename columns to avoid conflicts # Reviews dfs['review'] = dfs['review'].rename(columns={ 'date': 'review_date', 'stars': 'review_stars', 'text': 'review_text', 'useful': 'review_useful', 'funny': 'review_funny', 'cool': 'review_cool' }) # print("COLUMNS IN REVIEW DAFRA) # Tips dfs['tip'] = dfs['tip'].rename(columns={ 'date': 'tip_date', 'text': 'tip_text', 'compliment_count': 'tip_compliment_count' }) # Checkins dfs['checkin'] = dfs['checkin'].rename(columns={ 'date': 'checkin_date' }) # Users dfs['user'] = dfs['user'].rename(columns={ 'name': 'user_name', 'review_count': 'user_review_count', 'useful': 'user_useful', 'funny': 'user_funny', 'cool': 'user_cool' }) # Business dfs['business'] = dfs['business'].rename(columns={ 'name': 'business_name', 'stars': 'business_stars', 'review_count': 'business_review_count' }) dfs['google'] = dfs['google'].rename(columns={ 'name': 'business_name', 'stars': 'business_stars', 'review_count': 'business_review_count' }) df_business_final= dfs['business'] df_google_final=dfs['google'] df_review_final=dfs['review'] df_tip_final=dfs['tip'] df_checkin_final=dfs['checkin'] df_user_final=dfs['user'] df_business_final=pd.concat([df_business_final,df_google_final],axis=0) df_business_final.reset_index(drop=True,inplace=True) print("Starting merge process...") # Merge process with memory management print("Step 1: Starting with reviews...") merged_df = df_review_final print("Step 2: Merging with business data...") merged_df = merged_df.merge( df_business_final, on='business_id', how='left' ) print("Step 3: Merging with user data...") merged_df = merged_df.merge( df_user_final, on='user_id', how='left' ) print("Step 4: Merging with checkin data...") merged_df = merged_df.merge( df_checkin_final, on='business_id', how='left' ) print("Step 5: Aggregating and merging tip data...") tip_agg = df_tip_final.groupby('business_id').agg({ 'tip_compliment_count': 'sum', 'tip_text': 'count' }).rename(columns={'tip_text': 'tip_count'}) merged_df = merged_df.merge( tip_agg, on='business_id', how='left' ) print("Filling NaN values...") merged_df['tip_count'] = merged_df['tip_count'].fillna(0) merged_df['tip_compliment_count'] = merged_df['tip_compliment_count'].fillna(0) merged_df['checkin_date'] = merged_df['checkin_date'].fillna('') merged_df["friends"].fillna(0,inplace=True) for col in merged_df.columns: if merged_df[col].isnull().sum()>0: print(f" {col} has {merged_df[col].isnull().sum()} null values") print("Shape of Merged Dataset is : ",merged_df.shape) output_file = Path(output_path) / filename print("COLUMNS BEFORE PREPROCESING") print() print(merged_df.info()) for col in merged_df.columns: for v in merged_df[col]: print(f"Type of values in {col} is {type(v)} and values are like : {v}") break merged_df.to_csv(output_file,index=False) return merged_df # if __name__ == "__main__": # process_datasets()