import streamlit as st import cv2 import numpy as np face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') # Function to segment face from image def segment_face(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) for (x, y, w, h) in faces: face = image[y:y+h, x:x+w] face = cv2.resize(face, (256, 256)) face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) return face def main(): st.title("Face Segmentation") uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = np.array(bytearray(uploaded_file.read()), dtype=np.uint8) image = cv2.imdecode(image, cv2.IMREAD_COLOR) face = segment_face(image) st.subheader("Original Image") st.image(image) st.subheader("Segmented Face") st.image(face) st.subheader("Download Segmented Face") st.download_button( label="Download", data=cv2.imencode('.png', face)[1].tostring(), file_name='segmented_face.png', mime='image/png' ) if __name__ == '__main__': main()