Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +482 -0
- requirements.txt +4 -0
- similarity_pipeline.py +66 -0
- utils.py +261 -0
app.py
ADDED
|
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from typing import Dict, Any, Tuple
|
| 5 |
+
|
| 6 |
+
from utils import (
|
| 7 |
+
match_by_material_code,
|
| 8 |
+
process_specifications,
|
| 9 |
+
gower_similarity,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
REQUIRED_COLUMNS = {
|
| 14 |
+
"Material_Code",
|
| 15 |
+
"Material_Group",
|
| 16 |
+
"Base_Type",
|
| 17 |
+
"Moulding_Type",
|
| 18 |
+
"Product_Type",
|
| 19 |
+
"components_Specifications",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
STATUS_ORDER = {"Mismatch": 0, "Partial Match": 1, "Match": 2}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
ALLOWED_COLUMNS = [
|
| 26 |
+
"Material_Code",
|
| 27 |
+
"Legislation",
|
| 28 |
+
"Min_Dry_Cocoa_Solids",
|
| 29 |
+
"Dry_Milk_Solids",
|
| 30 |
+
"MilkFat",
|
| 31 |
+
"SKU_Tag_Expanded",
|
| 32 |
+
"Packaging_Info_Bag_Box",
|
| 33 |
+
"Packaging_Info_Palletss",
|
| 34 |
+
"Dry_Fat_Free_Cocoa_Solids",
|
| 35 |
+
"Material_Group",
|
| 36 |
+
"components_Specifications",
|
| 37 |
+
"Sugars_g",
|
| 38 |
+
"Protein_g",
|
| 39 |
+
"Total_Fat_g",
|
| 40 |
+
"Contains_Milk_Proteins",
|
| 41 |
+
"Contains_Egg_Products",
|
| 42 |
+
"Contains_Soy_Proteins",
|
| 43 |
+
"Contains_Wheat",
|
| 44 |
+
"Contains_Rye",
|
| 45 |
+
"Contains_Fish",
|
| 46 |
+
"Contains_Crustacean_And_Shell_Fish",
|
| 47 |
+
"Contains_Hazelnuts_Almonds",
|
| 48 |
+
"Contains_Peanuts",
|
| 49 |
+
"Contains_Sulphite_E220_E227",
|
| 50 |
+
"Contains_Celery",
|
| 51 |
+
"Contains_Sesame_Products",
|
| 52 |
+
"Suitable_For_Vegetarians",
|
| 53 |
+
"Suitable_For_Vegans",
|
| 54 |
+
"Contains_Peanut_Oil",
|
| 55 |
+
"Contains_Mustard",
|
| 56 |
+
"Contains_Molluscs",
|
| 57 |
+
"Contains_Lupin",
|
| 58 |
+
"Contains_Buckwheat",
|
| 59 |
+
"Base_Type",
|
| 60 |
+
"Moulding_Type",
|
| 61 |
+
"Product_Type",
|
| 62 |
+
"Colour_TF",
|
| 63 |
+
"Kosher_Certificate",
|
| 64 |
+
"Country_Claim",
|
| 65 |
+
"Shelflife",
|
| 66 |
+
"Packaging_Info",
|
| 67 |
+
"Brand",
|
| 68 |
+
"Commercial_Name",
|
| 69 |
+
"Contains_Hydrogenated",
|
| 70 |
+
"Hydrogenated",
|
| 71 |
+
"Smallest_Unit_Weight_In_Kg",
|
| 72 |
+
"Units_Per_Pallet",
|
| 73 |
+
"Certification_Tag",
|
| 74 |
+
"Colour_Type_Tag",
|
| 75 |
+
"Flavor_Type_Tag",
|
| 76 |
+
"Shape",
|
| 77 |
+
"SKU_Material_Tag",
|
| 78 |
+
"Origin",
|
| 79 |
+
"Sku_Ingredient_Tag",
|
| 80 |
+
"Is_Organic",
|
| 81 |
+
"pH",
|
| 82 |
+
"Normalised_Yield_Pa",
|
| 83 |
+
"Normalised_Linear_Viscosity_mPaS",
|
| 84 |
+
"Normalised_Casson_Mpa_S",
|
| 85 |
+
"Brookfield_40C_S27_20_RPM",
|
| 86 |
+
"Fineness_Micrometer",
|
| 87 |
+
"Dimensions_Length",
|
| 88 |
+
"Dimensions_Width",
|
| 89 |
+
"Dimensions_Count_lb",
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def _ensure_required_columns(df: pd.DataFrame) -> None:
|
| 94 |
+
missing = REQUIRED_COLUMNS - set(df.columns)
|
| 95 |
+
if missing:
|
| 96 |
+
raise gr.Error(
|
| 97 |
+
"The uploaded file is missing required columns: "
|
| 98 |
+
+ ", ".join(sorted(missing))
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def _format_value(value: Any) -> str:
|
| 103 |
+
if isinstance(value, (float, np.floating)):
|
| 104 |
+
if np.isnan(value):
|
| 105 |
+
return "-"
|
| 106 |
+
return f"{value:.4g}"
|
| 107 |
+
if isinstance(value, (int, np.integer)):
|
| 108 |
+
return str(value)
|
| 109 |
+
if value is None:
|
| 110 |
+
return "-"
|
| 111 |
+
text = str(value).strip()
|
| 112 |
+
return text if text else "-"
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def _classify_match(anchor: Any, candidate: Any) -> str:
|
| 116 |
+
anchor_missing = pd.isna(anchor)
|
| 117 |
+
candidate_missing = pd.isna(candidate)
|
| 118 |
+
|
| 119 |
+
if anchor_missing and candidate_missing:
|
| 120 |
+
return "Match"
|
| 121 |
+
if anchor_missing or candidate_missing:
|
| 122 |
+
return "Partial Match"
|
| 123 |
+
|
| 124 |
+
if isinstance(anchor, (float, np.floating, int, np.integer)) and isinstance(
|
| 125 |
+
candidate, (float, np.floating, int, np.integer)
|
| 126 |
+
):
|
| 127 |
+
if np.isclose(float(anchor), float(candidate), atol=1e-6):
|
| 128 |
+
return "Match"
|
| 129 |
+
return "Mismatch"
|
| 130 |
+
|
| 131 |
+
if str(anchor).strip().lower() == str(candidate).strip().lower():
|
| 132 |
+
return "Match"
|
| 133 |
+
return "Mismatch"
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def load_dataset(file_path) -> Tuple[pd.DataFrame, Any, str]:
|
| 137 |
+
if not file_path:
|
| 138 |
+
raise gr.Error("Please upload an Excel data file.")
|
| 139 |
+
|
| 140 |
+
if isinstance(file_path, (list, tuple)):
|
| 141 |
+
if not file_path:
|
| 142 |
+
raise gr.Error("Please upload an Excel data file.")
|
| 143 |
+
file_path = file_path[0]
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
df = pd.read_excel(file_path, engine="openpyxl")
|
| 147 |
+
except Exception as exc:
|
| 148 |
+
raise gr.Error(f"Unable to read the uploaded file: {exc}") from exc
|
| 149 |
+
|
| 150 |
+
allowed_cols = ALLOWED_COLUMNS
|
| 151 |
+
if allowed_cols:
|
| 152 |
+
present_allowed = [c for c in allowed_cols if c in df.columns]
|
| 153 |
+
if not present_allowed:
|
| 154 |
+
raise gr.Error(
|
| 155 |
+
"None of the expected columns were found in the uploaded file."
|
| 156 |
+
)
|
| 157 |
+
df = df[present_allowed]
|
| 158 |
+
missing_allowed = [c for c in allowed_cols if c not in df.columns]
|
| 159 |
+
else:
|
| 160 |
+
missing_allowed = []
|
| 161 |
+
|
| 162 |
+
_ensure_required_columns(df)
|
| 163 |
+
|
| 164 |
+
if "Legislation" not in df.columns:
|
| 165 |
+
df["Legislation"] = "Unknown"
|
| 166 |
+
|
| 167 |
+
legislation_options = (
|
| 168 |
+
["All"]
|
| 169 |
+
+ sorted(
|
| 170 |
+
{str(v).strip() for v in df["Legislation"].dropna().unique()} - {""}
|
| 171 |
+
)
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
message = f"Loaded {len(df):,} rows with {df.shape[1]} columns."
|
| 175 |
+
if allowed_cols:
|
| 176 |
+
message += f" Using {len(present_allowed)} allowed column(s)."
|
| 177 |
+
if missing_allowed:
|
| 178 |
+
message += f" {len(missing_allowed)} expected column(s) were not found."
|
| 179 |
+
return df, gr.update(choices=legislation_options, value=legislation_options[0]), message
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def _prepare_similarity(
|
| 183 |
+
df: pd.DataFrame,
|
| 184 |
+
material_code: str,
|
| 185 |
+
top_n: int,
|
| 186 |
+
legislation_filter: str,
|
| 187 |
+
) -> Tuple[pd.DataFrame, Dict[str, Any], Any, str]:
|
| 188 |
+
if df is None:
|
| 189 |
+
raise gr.Error("Please load a data file before searching.")
|
| 190 |
+
|
| 191 |
+
material_code = material_code.strip()
|
| 192 |
+
if not material_code:
|
| 193 |
+
raise gr.Error("Enter a material code to search.")
|
| 194 |
+
|
| 195 |
+
if material_code not in df["Material_Code"].values:
|
| 196 |
+
raise gr.Error(f"Material code '{material_code}' was not found in the dataset.")
|
| 197 |
+
|
| 198 |
+
matches = match_by_material_code(df, material_code)
|
| 199 |
+
if matches.empty:
|
| 200 |
+
raise gr.Error(
|
| 201 |
+
"No comparable SKUs share the required grouping attributes with the anchor material."
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
base_non_spec_cols = [c for c in matches.columns if c != "components_Specifications"]
|
| 205 |
+
matches_expanded = process_specifications(matches, material_code, df)
|
| 206 |
+
spec_columns = [
|
| 207 |
+
c
|
| 208 |
+
for c in matches_expanded.columns
|
| 209 |
+
if c not in base_non_spec_cols and c != "Material_Code"
|
| 210 |
+
]
|
| 211 |
+
|
| 212 |
+
anchor_idx = matches_expanded.index[
|
| 213 |
+
matches_expanded["Material_Code"] == material_code
|
| 214 |
+
][0]
|
| 215 |
+
|
| 216 |
+
gower_input = matches_expanded.copy()
|
| 217 |
+
obj_cols = gower_input.select_dtypes(include="object").columns
|
| 218 |
+
for col in obj_cols:
|
| 219 |
+
gower_input[col] = gower_input[col].apply(
|
| 220 |
+
lambda v: v.strip().lower() if isinstance(v, str) else v
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
scores = gower_similarity(
|
| 224 |
+
gower_input,
|
| 225 |
+
query_idx=anchor_idx,
|
| 226 |
+
boost="count",
|
| 227 |
+
normalize=True,
|
| 228 |
+
exclude_cols=["Material_Code", "Legislation"],
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
results = scores.join(
|
| 232 |
+
df[
|
| 233 |
+
[
|
| 234 |
+
"Material_Code",
|
| 235 |
+
"Legislation",
|
| 236 |
+
"Material_Group",
|
| 237 |
+
"Base_Type",
|
| 238 |
+
"Moulding_Type",
|
| 239 |
+
"Product_Type",
|
| 240 |
+
]
|
| 241 |
+
],
|
| 242 |
+
how="left",
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
results = results.loc[results.index != anchor_idx]
|
| 246 |
+
results = results[results["Material_Code"].astype(str) != material_code]
|
| 247 |
+
|
| 248 |
+
if legislation_filter and legislation_filter != "All":
|
| 249 |
+
results = results[results["Legislation"].astype(str) == legislation_filter]
|
| 250 |
+
|
| 251 |
+
results = results.sort_values(
|
| 252 |
+
["score", "similarity"], ascending=[False, False]
|
| 253 |
+
).head(int(top_n))
|
| 254 |
+
|
| 255 |
+
if results.empty:
|
| 256 |
+
empty_message = "No similar SKUs found for the selected criteria."
|
| 257 |
+
empty_dropdown = gr.update(choices=[], value=None)
|
| 258 |
+
return pd.DataFrame(), {}, empty_dropdown, empty_message
|
| 259 |
+
|
| 260 |
+
display_df = results[
|
| 261 |
+
[
|
| 262 |
+
"Material_Code",
|
| 263 |
+
"Legislation",
|
| 264 |
+
"distance",
|
| 265 |
+
"similarity",
|
| 266 |
+
"score",
|
| 267 |
+
"used_count",
|
| 268 |
+
]
|
| 269 |
+
].copy()
|
| 270 |
+
display_df[["distance", "similarity", "score"]] = display_df[
|
| 271 |
+
["distance", "similarity", "score"]
|
| 272 |
+
].round(4)
|
| 273 |
+
|
| 274 |
+
state = {
|
| 275 |
+
"scores": scores,
|
| 276 |
+
"matches_expanded": matches_expanded,
|
| 277 |
+
"anchor_idx": anchor_idx,
|
| 278 |
+
"anchor_code": material_code,
|
| 279 |
+
"result_indices": results.index.tolist(),
|
| 280 |
+
"spec_columns": spec_columns,
|
| 281 |
+
}
|
| 282 |
+
|
| 283 |
+
candidate_codes = results["Material_Code"].tolist()
|
| 284 |
+
spec_msg = f" with {len(spec_columns)} component field(s)" if spec_columns else ""
|
| 285 |
+
message = f"Found {len(display_df)} similar SKUs{spec_msg}."
|
| 286 |
+
return (
|
| 287 |
+
display_df.reset_index(drop=True),
|
| 288 |
+
state,
|
| 289 |
+
gr.update(choices=candidate_codes, value=candidate_codes[0]),
|
| 290 |
+
message,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def _build_comparison(
|
| 295 |
+
search_state: Dict[str, Any], selected_code: str
|
| 296 |
+
) -> Tuple[str, pd.DataFrame]:
|
| 297 |
+
if not search_state:
|
| 298 |
+
return "Load results to compare SKUs.", pd.DataFrame()
|
| 299 |
+
if not selected_code:
|
| 300 |
+
return "Select a SKU to compare against the anchor.", pd.DataFrame()
|
| 301 |
+
|
| 302 |
+
matches_expanded: pd.DataFrame = search_state["matches_expanded"]
|
| 303 |
+
scores: pd.DataFrame = search_state["scores"]
|
| 304 |
+
anchor_idx = search_state["anchor_idx"]
|
| 305 |
+
anchor_code = search_state["anchor_code"]
|
| 306 |
+
spec_columns = search_state.get("spec_columns", [])
|
| 307 |
+
|
| 308 |
+
candidate_rows = matches_expanded[
|
| 309 |
+
matches_expanded["Material_Code"] == selected_code
|
| 310 |
+
]
|
| 311 |
+
if candidate_rows.empty:
|
| 312 |
+
return "Selected SKU is not available for comparison.", pd.DataFrame()
|
| 313 |
+
|
| 314 |
+
candidate_idx = candidate_rows.index[0]
|
| 315 |
+
|
| 316 |
+
anchor_row = matches_expanded.loc[anchor_idx]
|
| 317 |
+
candidate_row = matches_expanded.loc[candidate_idx]
|
| 318 |
+
|
| 319 |
+
base_columns = [
|
| 320 |
+
"Material_Group",
|
| 321 |
+
"Base_Type",
|
| 322 |
+
"Moulding_Type",
|
| 323 |
+
"Product_Type",
|
| 324 |
+
"Legislation",
|
| 325 |
+
]
|
| 326 |
+
|
| 327 |
+
other_columns = [
|
| 328 |
+
c
|
| 329 |
+
for c in matches_expanded.columns
|
| 330 |
+
if c not in base_columns + ["Material_Code"] + spec_columns
|
| 331 |
+
]
|
| 332 |
+
comparison_columns = base_columns + spec_columns + other_columns
|
| 333 |
+
|
| 334 |
+
rows = []
|
| 335 |
+
for col in comparison_columns:
|
| 336 |
+
anchor_value = anchor_row.get(col, np.nan)
|
| 337 |
+
candidate_value = candidate_row.get(col, np.nan)
|
| 338 |
+
status = _classify_match(anchor_value, candidate_value)
|
| 339 |
+
rows.append(
|
| 340 |
+
{
|
| 341 |
+
"Attribute": col,
|
| 342 |
+
"Anchor Value": _format_value(anchor_value),
|
| 343 |
+
"Candidate Value": _format_value(candidate_value),
|
| 344 |
+
"Status": status,
|
| 345 |
+
}
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
comparison_df = pd.DataFrame(rows)
|
| 349 |
+
comparison_df["Status"] = pd.Categorical(
|
| 350 |
+
comparison_df["Status"],
|
| 351 |
+
categories=["Mismatch", "Partial Match", "Match"],
|
| 352 |
+
ordered=True,
|
| 353 |
+
)
|
| 354 |
+
comparison_df = comparison_df.sort_values("Status", key=lambda s: s.map(STATUS_ORDER))
|
| 355 |
+
|
| 356 |
+
score = scores.loc[candidate_idx, "score"]
|
| 357 |
+
similarity = scores.loc[candidate_idx, "similarity"]
|
| 358 |
+
distance = scores.loc[candidate_idx, "distance"]
|
| 359 |
+
used = scores.loc[candidate_idx, "used_count"]
|
| 360 |
+
|
| 361 |
+
spec_note = " (no component specs detected)" if not spec_columns else ""
|
| 362 |
+
summary = (
|
| 363 |
+
f"**{anchor_code} vs {selected_code}**{spec_note} \n"
|
| 364 |
+
f"Score: {score:.4f} • Similarity: {similarity:.4f} • Distance: {distance:.4f} \n"
|
| 365 |
+
f"Evidence Columns Used: {int(used)}"
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
return summary, comparison_df.reset_index(drop=True)
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def build_interface() -> gr.Blocks:
|
| 372 |
+
with gr.Blocks(title="SKU Similarity Explorer", theme=gr.themes.Soft()) as demo:
|
| 373 |
+
gr.Markdown(
|
| 374 |
+
"""
|
| 375 |
+
## SKU Similarity Explorer
|
| 376 |
+
Upload a master data file, choose an anchor SKU, and explore the most similar alternatives.
|
| 377 |
+
Use the Legislation filter to focus your results, then drill into any candidate for a side-by-side comparison
|
| 378 |
+
with the anchor SKU to understand alignment across attributes and component specifications.
|
| 379 |
+
"""
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
data_state = gr.State()
|
| 383 |
+
search_state = gr.State()
|
| 384 |
+
|
| 385 |
+
with gr.Column():
|
| 386 |
+
with gr.Row():
|
| 387 |
+
data_file = gr.File(
|
| 388 |
+
label="Master Data File (Excel)",
|
| 389 |
+
file_types=[".xlsx"],
|
| 390 |
+
type="filepath",
|
| 391 |
+
file_count="single",
|
| 392 |
+
)
|
| 393 |
+
load_button = gr.Button("Load Data", variant="primary")
|
| 394 |
+
load_status = gr.Markdown("Upload your data file to begin.")
|
| 395 |
+
|
| 396 |
+
legislation_filter = gr.Dropdown(
|
| 397 |
+
label="Legislation Filter",
|
| 398 |
+
choices=["All"],
|
| 399 |
+
value="All",
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
with gr.Row():
|
| 403 |
+
material_code_input = gr.Textbox(
|
| 404 |
+
label="Anchor Material Code",
|
| 405 |
+
placeholder="Enter the SKU to compare against",
|
| 406 |
+
)
|
| 407 |
+
topn_slider = gr.Slider(
|
| 408 |
+
label="Number of Similar SKUs",
|
| 409 |
+
minimum=1,
|
| 410 |
+
maximum=50,
|
| 411 |
+
value=10,
|
| 412 |
+
step=1,
|
| 413 |
+
)
|
| 414 |
+
find_button = gr.Button("Find Similar SKUs", variant="primary")
|
| 415 |
+
|
| 416 |
+
results_status = gr.Markdown()
|
| 417 |
+
results_table = gr.Dataframe(
|
| 418 |
+
headers=[
|
| 419 |
+
"Material_Code",
|
| 420 |
+
"Legislation",
|
| 421 |
+
"distance",
|
| 422 |
+
"similarity",
|
| 423 |
+
"score",
|
| 424 |
+
"used_count",
|
| 425 |
+
],
|
| 426 |
+
datatype=["str", "str", "number", "number", "number", "number"],
|
| 427 |
+
interactive=False,
|
| 428 |
+
label="Similar SKUs",
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
candidate_selector = gr.Dropdown(
|
| 432 |
+
label="Compare Candidate",
|
| 433 |
+
choices=[],
|
| 434 |
+
interactive=True,
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
comparison_summary = gr.Markdown("Select a candidate SKU to review the comparison.")
|
| 438 |
+
comparison_table = gr.Dataframe(
|
| 439 |
+
headers=["Attribute", "Anchor Value", "Candidate Value", "Status"],
|
| 440 |
+
interactive=False,
|
| 441 |
+
label="Attribute-Level Comparison",
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
load_button.click(
|
| 445 |
+
fn=load_dataset,
|
| 446 |
+
inputs=data_file,
|
| 447 |
+
outputs=[data_state, legislation_filter, load_status],
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
find_event = find_button.click(
|
| 451 |
+
fn=_prepare_similarity,
|
| 452 |
+
inputs=[data_state, material_code_input, topn_slider, legislation_filter],
|
| 453 |
+
outputs=[results_table, search_state, candidate_selector, results_status],
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
find_event.then(
|
| 457 |
+
fn=_build_comparison,
|
| 458 |
+
inputs=[search_state, candidate_selector],
|
| 459 |
+
outputs=[comparison_summary, comparison_table],
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
candidate_selector.change(
|
| 463 |
+
fn=_build_comparison,
|
| 464 |
+
inputs=[search_state, candidate_selector],
|
| 465 |
+
outputs=[comparison_summary, comparison_table],
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
gr.Markdown(
|
| 469 |
+
"""
|
| 470 |
+
#### Tips
|
| 471 |
+
- Ensure the uploaded file contains the required attributes listed in the documentation.
|
| 472 |
+
- Use the Legislation filter to focus on products compliant with specific regions or standards.
|
| 473 |
+
- Scores combine similarity with evidence coverage, so higher scores indicate both alignment and stronger data backing.
|
| 474 |
+
"""
|
| 475 |
+
)
|
| 476 |
+
|
| 477 |
+
return demo
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
if __name__ == "__main__":
|
| 481 |
+
app = build_interface()
|
| 482 |
+
app.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas>=1.3.0
|
| 2 |
+
numpy>=1.20.0
|
| 3 |
+
openpyxl>=3.0.0 # Required for reading Excel files
|
| 4 |
+
gradio>=4.0.0
|
similarity_pipeline.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd # pip install pandas openpyxl
|
| 2 |
+
import numpy as np
|
| 3 |
+
from utils import (
|
| 4 |
+
match_by_material_code,
|
| 5 |
+
process_specifications,
|
| 6 |
+
gower_similarity
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
def find_similar_materials(material_code: str, data_path: str, top_n: int = 10) -> pd.DataFrame:
|
| 10 |
+
|
| 11 |
+
# Read and prepare the data
|
| 12 |
+
active_cols = [
|
| 13 |
+
'Material_Code', 'Material_Group', 'Base_Type', 'Moulding_Type',
|
| 14 |
+
'Product_Type', 'components_Specifications', 'Legislation'
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
# Read the data file
|
| 19 |
+
df = pd.read_excel(data_path, usecols=active_cols)
|
| 20 |
+
|
| 21 |
+
# Find matching materials by group attributes
|
| 22 |
+
matches = match_by_material_code(df, material_code)
|
| 23 |
+
if matches.empty:
|
| 24 |
+
raise ValueError(f"No matches found for material code: {material_code}")
|
| 25 |
+
|
| 26 |
+
# Process and expand specifications
|
| 27 |
+
matches_expanded = process_specifications(matches, material_code, df)
|
| 28 |
+
|
| 29 |
+
# Calculate similarity scores
|
| 30 |
+
q_idx = df.index[df['Material_Code'] == material_code][0]
|
| 31 |
+
scores = gower_similarity(
|
| 32 |
+
matches_expanded,
|
| 33 |
+
query_idx=q_idx,
|
| 34 |
+
boost='count',
|
| 35 |
+
normalize=True,
|
| 36 |
+
exclude_cols=['Material_Code', 'Legislation']
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Get top N similar materials
|
| 40 |
+
top_indices = scores.head(top_n).index
|
| 41 |
+
similar_materials = df.loc[top_indices].copy()
|
| 42 |
+
|
| 43 |
+
# Add similarity metrics to the results
|
| 44 |
+
similar_materials = similar_materials.join(scores[['distance', 'similarity', 'score', 'used_count']])
|
| 45 |
+
|
| 46 |
+
return similar_materials
|
| 47 |
+
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Error processing material {material_code}: {str(e)}")
|
| 50 |
+
raise
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
# Example usage
|
| 54 |
+
data_file = "/Users/aryanrajsaxena/Desktop/BarryC/data_analysis/data-files/Master Data - Part 1.xlsx"
|
| 55 |
+
material_code = "YYW-PN-G300297-E15"
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
similar_materials = find_similar_materials(material_code, data_file)
|
| 59 |
+
print(f"\nTop similar materials for {material_code}:")
|
| 60 |
+
print(similar_materials[['Material_Code', 'Material_Group', 'similarity', 'score', 'used_count']])
|
| 61 |
+
except FileNotFoundError:
|
| 62 |
+
print(f"Error: Data file not found at {data_file}")
|
| 63 |
+
except ValueError as e:
|
| 64 |
+
print(f"Error: {str(e)}")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Unexpected error processing material {material_code}: {str(e)}")
|
utils.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import numpy as np
|
| 3 |
+
import ast
|
| 4 |
+
from typing import Optional, Iterable, Union
|
| 5 |
+
|
| 6 |
+
def _parse_dict_cell(x):
|
| 7 |
+
if isinstance(x, dict):
|
| 8 |
+
return x
|
| 9 |
+
if pd.isna(x):
|
| 10 |
+
return {}
|
| 11 |
+
try:
|
| 12 |
+
return ast.literal_eval(str(x))
|
| 13 |
+
except Exception:
|
| 14 |
+
return {}
|
| 15 |
+
|
| 16 |
+
def _flatten(d, parent=''):
|
| 17 |
+
out = {}
|
| 18 |
+
if not isinstance(d, dict):
|
| 19 |
+
return out
|
| 20 |
+
for k, v in d.items():
|
| 21 |
+
key = f"{parent}.{k}" if parent else f"{k}"
|
| 22 |
+
if isinstance(v, dict):
|
| 23 |
+
out.update(_flatten(v, key))
|
| 24 |
+
else:
|
| 25 |
+
# normalize list/tuple/set to a string so it's usable as a single value
|
| 26 |
+
if isinstance(v, (list, tuple, set)):
|
| 27 |
+
try:
|
| 28 |
+
v = ";".join(map(str, v))
|
| 29 |
+
except Exception:
|
| 30 |
+
v = str(v)
|
| 31 |
+
out[key] = v
|
| 32 |
+
return out
|
| 33 |
+
|
| 34 |
+
def _strip_percent_to_float(df: pd.DataFrame) -> pd.DataFrame:
|
| 35 |
+
out = df.copy()
|
| 36 |
+
obj_cols = out.select_dtypes(include=['object']).columns
|
| 37 |
+
for c in obj_cols:
|
| 38 |
+
s = out[c]
|
| 39 |
+
has_pct = s.astype(str).str.contains('%', na=False)
|
| 40 |
+
if not has_pct.any():
|
| 41 |
+
continue
|
| 42 |
+
# strip %, commas, spaces; convert to numeric
|
| 43 |
+
cleaned = s.astype(str).str.replace('%', '', regex=False).str.replace(',', '', regex=False).str.strip()
|
| 44 |
+
out[c] = pd.to_numeric(cleaned, errors='coerce')
|
| 45 |
+
return out
|
| 46 |
+
|
| 47 |
+
def get_spec_keys_from_material(df, material_code, spec_col='components_Specifications'):
|
| 48 |
+
"""Get component specification keys from a specific material code"""
|
| 49 |
+
material_idx = df.index[df['Material_Code'] == material_code][0]
|
| 50 |
+
material_specs = df.loc[material_idx, spec_col]
|
| 51 |
+
spec_dict = _parse_dict_cell(material_specs)
|
| 52 |
+
return list(_flatten(spec_dict).keys())
|
| 53 |
+
|
| 54 |
+
def match_by_material_code(df: pd.DataFrame, material_code, code_col='Material_Code'):
|
| 55 |
+
"""
|
| 56 |
+
Return rows whose (Material_Group, Base_Type, Moulding_Type, Product_Type)
|
| 57 |
+
exactly match the values of the given material_code in df.
|
| 58 |
+
If multiple rows share the material_code, the first match is used.
|
| 59 |
+
"""
|
| 60 |
+
cols = ['Material_Group', 'Base_Type', 'Moulding_Type', 'Product_Type']
|
| 61 |
+
required = [code_col] + cols
|
| 62 |
+
missing = [c for c in required if c not in df.columns]
|
| 63 |
+
if missing:
|
| 64 |
+
raise ValueError(f"Missing required columns: {missing}")
|
| 65 |
+
|
| 66 |
+
ref_rows = df.loc[df[code_col] == material_code, cols]
|
| 67 |
+
if ref_rows.empty:
|
| 68 |
+
# No such material_code
|
| 69 |
+
return df.iloc[0:0].copy()
|
| 70 |
+
|
| 71 |
+
ref = ref_rows.iloc[0] # use first occurrence
|
| 72 |
+
mask = pd.Series(True, index=df.index)
|
| 73 |
+
for c in cols:
|
| 74 |
+
v = ref[c]
|
| 75 |
+
mask &= (df[c].isna() if pd.isna(v) else df[c].eq(v))
|
| 76 |
+
|
| 77 |
+
return df.loc[mask].copy()
|
| 78 |
+
|
| 79 |
+
def process_specifications(matches, material_code, df, spec_col='components_Specifications'):
|
| 80 |
+
"""Process and expand component specifications"""
|
| 81 |
+
# Get the keys from the reference material code
|
| 82 |
+
spec_keys = get_spec_keys_from_material(df, material_code)
|
| 83 |
+
|
| 84 |
+
# Parse and flatten each row's dict, but only keep the keys from reference material
|
| 85 |
+
parsed = matches[spec_col].apply(_parse_dict_cell).apply(_flatten)
|
| 86 |
+
|
| 87 |
+
# Build a DataFrame with only the reference material's keys, NaN where missing
|
| 88 |
+
spec_df = pd.DataFrame([{k: d.get(k, np.nan) for k in spec_keys}
|
| 89 |
+
for d in parsed], index=matches.index)
|
| 90 |
+
|
| 91 |
+
# Best-effort numeric coercion so numeric-looking strings become numbers
|
| 92 |
+
def _convert_numeric(col: pd.Series) -> pd.Series:
|
| 93 |
+
try:
|
| 94 |
+
return pd.to_numeric(col)
|
| 95 |
+
except (TypeError, ValueError):
|
| 96 |
+
return col
|
| 97 |
+
|
| 98 |
+
spec_df = spec_df.apply(_convert_numeric)
|
| 99 |
+
|
| 100 |
+
# Join back and drop the original dict column
|
| 101 |
+
matches_expanded = matches.drop(columns=[spec_col]).join(spec_df)
|
| 102 |
+
|
| 103 |
+
# Convert percentage values to floats
|
| 104 |
+
matches_expanded = _strip_percent_to_float(matches_expanded)
|
| 105 |
+
|
| 106 |
+
return matches_expanded
|
| 107 |
+
|
| 108 |
+
def gower_similarity(
|
| 109 |
+
df: pd.DataFrame,
|
| 110 |
+
query_idx,
|
| 111 |
+
weights: Optional[Union[dict, pd.Series]] = None,
|
| 112 |
+
boost: str = 'count', # 'count' or 'weight'
|
| 113 |
+
normalize: bool = True, # True -> final score kept in [0,1]
|
| 114 |
+
exclude_cols: Optional[Iterable[str]] = None
|
| 115 |
+
) -> pd.DataFrame:
|
| 116 |
+
"""
|
| 117 |
+
Weighted Gower-like similarity with anchor-centric missing value handling:
|
| 118 |
+
|
| 119 |
+
Case 1: Anchor NaN, candidate has value -> Column counts as used (15/15)
|
| 120 |
+
Case 2: Anchor has value, candidate NaN -> Column counts as not used (14/15)
|
| 121 |
+
Case 3: Both NaN -> Column counts as used (15/15)
|
| 122 |
+
Case 4: Both have values -> Standard distance calculation
|
| 123 |
+
"""
|
| 124 |
+
# Defensive copy
|
| 125 |
+
X = df.copy()
|
| 126 |
+
|
| 127 |
+
# Drop excluded columns
|
| 128 |
+
if exclude_cols:
|
| 129 |
+
exclude = [c for c in exclude_cols if c in X.columns]
|
| 130 |
+
X = X.drop(columns=exclude)
|
| 131 |
+
|
| 132 |
+
cols = X.columns.tolist()
|
| 133 |
+
n = len(X)
|
| 134 |
+
if len(cols) == 0:
|
| 135 |
+
raise ValueError("No columns left after excluding columns.")
|
| 136 |
+
|
| 137 |
+
# split numeric / categorical
|
| 138 |
+
num_cols = X.select_dtypes(include=[np.number]).columns.tolist()
|
| 139 |
+
cat_cols = [c for c in cols if c not in num_cols]
|
| 140 |
+
|
| 141 |
+
# build weight series (default 1.0)
|
| 142 |
+
if weights is None:
|
| 143 |
+
w = pd.Series(1.0, index=cols, dtype='float64')
|
| 144 |
+
else:
|
| 145 |
+
if isinstance(weights, pd.Series):
|
| 146 |
+
w = pd.Series(1.0, index=cols, dtype='float64')
|
| 147 |
+
for k, v in weights.items():
|
| 148 |
+
if k in w.index:
|
| 149 |
+
w[k] = float(v)
|
| 150 |
+
elif isinstance(weights, dict):
|
| 151 |
+
w = pd.Series(1.0, index=cols, dtype='float64')
|
| 152 |
+
for k, v in weights.items():
|
| 153 |
+
if k in w.index:
|
| 154 |
+
w[k] = float(v)
|
| 155 |
+
else:
|
| 156 |
+
raise TypeError("weights must be None, dict, or pd.Series")
|
| 157 |
+
|
| 158 |
+
# pick query row (by index label)
|
| 159 |
+
q = X.loc[query_idx]
|
| 160 |
+
|
| 161 |
+
# NUMERIC PART
|
| 162 |
+
if num_cols:
|
| 163 |
+
A = X[num_cols].to_numpy(dtype='float64') # shape (n, m_num)
|
| 164 |
+
qA = q[num_cols].to_numpy(dtype='float64') # shape (m_num,)
|
| 165 |
+
|
| 166 |
+
# Anchor-centric missing value handling
|
| 167 |
+
anchor_nan = np.isnan(qA) # True where anchor is NaN
|
| 168 |
+
data_nan = np.isnan(A) # True where data is NaN
|
| 169 |
+
|
| 170 |
+
# Cases 1 & 3: Anchor NaN and (candidate has value OR candidate NaN) -> count as used
|
| 171 |
+
# Case 2: Anchor has value, candidate NaN -> count as not used
|
| 172 |
+
# Case 4: Both have values -> standard comparison
|
| 173 |
+
used_num = (~anchor_nan & ~data_nan) | anchor_nan # Case 4 OR (Case 1 & 3)
|
| 174 |
+
|
| 175 |
+
# For distance calculation, only use where both have values (Case 4)
|
| 176 |
+
valid_compare = ~anchor_nan & ~data_nan
|
| 177 |
+
|
| 178 |
+
# ranges robust to all-NaN columns:
|
| 179 |
+
col_max = np.nanmax(A, axis=0)
|
| 180 |
+
col_min = np.nanmin(A, axis=0)
|
| 181 |
+
ranges = col_max - col_min
|
| 182 |
+
ranges = np.where(np.isnan(ranges) | (ranges == 0), 1.0, ranges)
|
| 183 |
+
|
| 184 |
+
diff = np.abs(A - qA) # broadcast (n, m_num)
|
| 185 |
+
comp_num = diff / ranges # scaled numeric difference
|
| 186 |
+
comp_num[~valid_compare] = 0.0 # zero distance for Case 1,2,3
|
| 187 |
+
|
| 188 |
+
w_num = w[num_cols].to_numpy(dtype='float64')
|
| 189 |
+
num_sum = (comp_num * w_num).sum(axis=1)
|
| 190 |
+
num_used_w = (used_num * w_num).sum(axis=1) # weight sum reflects anchor-centric logic
|
| 191 |
+
num_used_cnt = used_num.sum(axis=1) # count reflects anchor-centric logic
|
| 192 |
+
else:
|
| 193 |
+
num_sum = np.zeros(n, dtype='float64')
|
| 194 |
+
num_used_w = np.zeros(n, dtype='float64')
|
| 195 |
+
num_used_cnt = np.zeros(n, dtype='int64')
|
| 196 |
+
|
| 197 |
+
# CATEGORICAL PART
|
| 198 |
+
if cat_cols:
|
| 199 |
+
B = X[cat_cols].astype(object)
|
| 200 |
+
qB = q[cat_cols].astype(object)
|
| 201 |
+
|
| 202 |
+
# Anchor-centric missing value handling for categorical
|
| 203 |
+
anchor_miss = pd.isna(qB.values) # True where anchor is missing
|
| 204 |
+
data_miss = B.isna().values # True where data is missing
|
| 205 |
+
|
| 206 |
+
# Same logic as numeric part
|
| 207 |
+
used_cat = (~anchor_miss & ~data_miss) | anchor_miss
|
| 208 |
+
valid_compare = ~anchor_miss & ~data_miss
|
| 209 |
+
|
| 210 |
+
# equality check only where both have values
|
| 211 |
+
equal = (B.values == qB.values) & valid_compare
|
| 212 |
+
comp_cat = (~equal).astype('float64') # 1.0 if different, 0.0 if same or any NaN
|
| 213 |
+
|
| 214 |
+
w_cat = w[cat_cols].to_numpy(dtype='float64')
|
| 215 |
+
cat_sum = (comp_cat * w_cat).sum(axis=1)
|
| 216 |
+
cat_used_w = (used_cat * w_cat).sum(axis=1) # weight sum reflects anchor-centric logic
|
| 217 |
+
cat_used_cnt = used_cat.sum(axis=1) # count reflects anchor-centric logic
|
| 218 |
+
else:
|
| 219 |
+
cat_sum = np.zeros(n, dtype='float64')
|
| 220 |
+
cat_used_w = np.zeros(n, dtype='float64')
|
| 221 |
+
cat_used_cnt = np.zeros(n, dtype='int64')
|
| 222 |
+
|
| 223 |
+
used_w = num_used_w + cat_used_w
|
| 224 |
+
used_cnt = num_used_cnt + cat_used_cnt
|
| 225 |
+
comp_sum = num_sum + cat_sum
|
| 226 |
+
|
| 227 |
+
# distance calculation (now safer since we zero-out invalid comparisons)
|
| 228 |
+
with np.errstate(invalid='ignore', divide='ignore'):
|
| 229 |
+
dist = comp_sum / used_w
|
| 230 |
+
dist = np.where(used_w == 0, np.nan, dist) # no overlap -> NaN
|
| 231 |
+
dist = np.clip(dist, 0.0, 1.0) # clamp to [0,1]
|
| 232 |
+
|
| 233 |
+
similarity = 1.0 - dist
|
| 234 |
+
|
| 235 |
+
# compute boost factor (now properly accounts for anchor-centric logic)
|
| 236 |
+
total_weight = w.sum()
|
| 237 |
+
total_count = len(cols)
|
| 238 |
+
|
| 239 |
+
if boost == 'weight':
|
| 240 |
+
if normalize:
|
| 241 |
+
factor = np.where(total_weight > 0, used_w / total_weight, 0.0)
|
| 242 |
+
else:
|
| 243 |
+
factor = used_w.copy()
|
| 244 |
+
else: # 'count'
|
| 245 |
+
if normalize:
|
| 246 |
+
factor = used_cnt / total_count # This now implements the 15/15, 14/15 logic
|
| 247 |
+
else:
|
| 248 |
+
factor = used_cnt.astype(float)
|
| 249 |
+
|
| 250 |
+
score = similarity * factor
|
| 251 |
+
|
| 252 |
+
out = pd.DataFrame({
|
| 253 |
+
'distance': dist,
|
| 254 |
+
'similarity': similarity,
|
| 255 |
+
'score': score,
|
| 256 |
+
'used_count': used_cnt,
|
| 257 |
+
'used_weight': used_w
|
| 258 |
+
}, index=X.index)
|
| 259 |
+
|
| 260 |
+
out = out.sort_values(['score', 'similarity'], ascending=[False, False])
|
| 261 |
+
return out
|