import os import streamlit as st from dotenv import load_dotenv from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import llamacpp from langchain_core.runnables.history import RunnableWithMessageHistory from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler from langchain.chains import create_history_aware_retriever, create_retrieval_chain, ConversationalRetrievalChain from langchain.document_loaders import TextLoader from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_community.chat_message_histories.streamlit import StreamlitChatMessageHistory from langchain.prompts import PromptTemplate from langchain.vectorstores import Chroma from utills import load_txt_documents, split_docs, load_uploaded_documents, retriever_from_chroma from langchain.text_splitter import TokenTextSplitter, RecursiveCharacterTextSplitter from langchain_community.document_loaders.directory import DirectoryLoader from HTML_templates import css, bot_template, user_template def get_vectorstore(text_chunks): model_name = "sentence-transformers/all-mpnet-base-v2" model_kwargs = {'device': 'cpu'} encode_kwargs = {'normalize_embeddings': True} embeddings = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) vectorstore_path = "docs/chroma/" if not os.path.exists(vectorstore_path): os.makedirs(vectorstore_path) vectorstore = Chroma.from_documents( documents=text_chunks, embedding=embeddings, persist_directory="docs/chroma/") return vectorstore data_path = "data" documents = [] for filename in os.listdir(data_path): if filename.endswith('.txt'): file_path = os.path.join(data_path, filename) documents = TextLoader(file_path).load() documents.extend(documents) docs = split_docs(documents, 350, 40) vectorstore = get_vectorstore(docs) def main(vectorstore): st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question,vectorstore) def handle_userinput(user_question,vectorstore): Rag_chain = create_conversational_rag_chain(vectorstore) msgs = StreamlitChatMessageHistory(key="special_app_key") response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) if 'retrieved_documents' in response: st.subheader("Retrieved Documents") for doc in response['source_documents']: st.write(f"Document: {doc.metadata['source']}") st.write(doc.page_content) def create_conversational_rag_chain(vectorstore): model_path = ('qwen2-0_5b-instruct-q4_0.gguf') callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) llm = llamacpp.LlamaCpp( model_path=model_path, n_gpu_layers=1, temperature=0.1, top_p=0.9, n_ctx=22000, max_tokens=200, repeat_penalty=1.7, callback_manager=callback_manager, verbose=False, ) contextualize_q_system_prompt = """Given a context, chat history and the latest user question which maybe reference context in the chat history, formulate a standalone question which can be understood without the chat history. Do NOT answer the question, just reformulate it if needed and otherwise return it as is.""" contextualize_q_prompt = ChatPromptTemplate.from_messages( [ ("system", contextualize_q_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}"), ] ) ha_retriever = create_history_aware_retriever(llm, vectorstore.as_retriever(), contextualize_q_prompt) qa_system_prompt = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Be as informative as possible, be polite and formal.\n{context}""" qa_prompt = ChatPromptTemplate.from_messages( [ ("system", qa_system_prompt), MessagesPlaceholder("chat_history"), ("human", "{input}"), ] ) question_answer_chain = create_stuff_documents_chain(llm, qa_prompt) rag_chain = create_retrieval_chain(ha_retriever, question_answer_chain) msgs = StreamlitChatMessageHistory(key="special_app_key") conversational_rag_chain = RunnableWithMessageHistory( rag_chain, lambda session_id: msgs, input_messages_key="input", history_messages_key="chat_history", output_messages_key="answer", return_source_documents=True ) return rag_chain if __name__ == "__main__": main(vectorstore)