import numpy as np import torch from bert_vits2 import utils, commons from bert_vits2.models import SynthesizerTrn from bert_vits2.text import symbols, cleaned_text_to_sequence, get_bert from bert_vits2.text.cleaner import clean_text from utils.nlp import sentence_split, cut class Bert_VITS2: def __init__(self, model, config, device=torch.device("cpu")): self.hps_ms = utils.get_hparams_from_file(config) self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0) self.speakers = [item[0] for item in sorted(list(getattr(self.hps_ms.data, 'spk2id', {'0': 0}).items()), key=lambda x: x[1])] self.net_g = SynthesizerTrn( len(symbols), self.hps_ms.data.filter_length // 2 + 1, self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, n_speakers=self.hps_ms.data.n_speakers, **self.hps_ms.model).to(device) _ = self.net_g.eval() self.device = device self.load_model(model) def load_model(self, model): utils.load_checkpoint(model, self.net_g, None, skip_optimizer=True) def get_speakers(self): return self.speakers def get_text(self, text, language_str, hps): norm_text, phone, tone, word2ph = clean_text(text, language_str) # print([f"{p}{t}" for p, t in zip(phone, tone)]) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert = get_bert(norm_text, word2ph, language_str) assert bert.shape[-1] == len(phone) phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, phone, tone, language def infer(self, text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): bert, phones, tones, lang_ids = self.get_text(text, "ZH", self.hps_ms) with torch.no_grad(): x_tst = phones.to(self.device).unsqueeze(0) tones = tones.to(self.device).unsqueeze(0) lang_ids = lang_ids.to(self.device).unsqueeze(0) bert = bert.to(self.device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(self.device) speakers = torch.LongTensor([int(sid)]).to(self.device) audio = self.net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[ 0][0, 0].data.cpu().float().numpy() torch.cuda.empty_cache() return audio def get_audio(self, voice, auto_break=False): text = voice.get("text", None) sdp_ratio = voice.get("sdp_ratio", 0.2) noise_scale = voice.get("noise", 0.5) noise_scale_w = voice.get("noisew", 0.6) length_scale = voice.get("length", 1) sid = voice.get("id", 0) max = voice.get("max", 50) # sentence_list = sentence_split(text, max, "ZH", ["zh"]) sentence_list = cut(text, max) audios = [] for sentence in sentence_list: audio = self.infer(sentence, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid) audios.append(audio) audio = np.concatenate(audios) return audio