import logging import numpy as np import streamlit as st from PIL import Image from streamlit_drawable_canvas import st_canvas from src.ml_utils import predict, get_model, transforms from src.utils import plot_img_with_rects, save_image st.title('Handwritten digit detector') logging.info('Starting') col1, col2 = st.columns(2) with col1: # Create a canvas component canvas_result = st_canvas( fill_color='#fff', stroke_width=5, stroke_color='#000', background_color='#fff', update_streamlit=True, height=400, width=400, drawing_mode='freedraw', key='canvas', ) with col2: logging.info('canvas ready') if canvas_result.image_data is not None: # convert a drawn image into numpy array with RGB from a canvas image with RGBA img = np.array(Image.fromarray(np.uint8(canvas_result.image_data)).convert('RGB')) image = transforms(image=img)['image'] logging.info('image augmented') model = get_model() logging.info('model ready') pred = predict(model, image) logging.info('prediction done') file_name = save_image(image.permute(1, 2, 0).numpy(), pred) threshold = st.slider('Bbox probability slider', min_value=0.0, max_value=1.0, value=0.8) fig = plot_img_with_rects(image.permute(1, 2, 0).numpy(), pred, threshold, coef=192) fig.savefig(f'{file_name}_temp.png') image = Image.open(f'{file_name}_temp.png') st.image(image) text = """ This is a small app for handwritten digit recognition and recognition developed for fun. It uses a handwritten YOLOv3 model trained from scratch. You can draw a digit (or whatever you want) and the model will try to understand what is it. You can use the slider above to show bounding boxes with a probability higher than the threshold. If you want to know how the app works in more detail, you are welcome to read "About" page. Enjoy! :) """ st.markdown(text, unsafe_allow_html=True)