""" Generative AI Chatbot through Document Sources """ import boto3 import gradio as gr from langchain.chains import RetrievalQA from langchain.embeddings.openai import OpenAIEmbeddings #from langchain.llms import ChatOpenAI from langchain.vectorstores import Chroma from langchain.chat_models import ChatOpenAI # Get OpenAI API key from SSM Parameter Store API_KEY_PARAMETER_PATH = '/openai/api_key' ssm_client = boto3.client('ssm', region_name='us-east-1') def get_openai_api_key(client, parameter_path): """ Get the OpenAI API key from the SSM Parameter Store Args: ssm_client: boto3 SSM client parameter_path: path to the SSM Parameter Store parameter Returns: OpenAI API key """ try: response = client.get_parameter( Name=parameter_path, WithDecryption=True, ) return response['Parameter']['Value'] except client.exceptions.ParameterNotFound: raise Exception(f'Parameter {parameter_path} not found in SSM Parameter Store') # Get the API key from the SSM Parameter Store openai_api_key = get_openai_api_key(client=ssm_client, parameter_path=API_KEY_PARAMETER_PATH) def OpenAIWithChroma(persist_directory='./chroma.db', model_name='gpt-3.5-turbo-16k', chain_type="stuff"): """ Create a retrieval chatbot with OpenAI LLM and Chroma Args: persist_directory: directory to save the Chroma database model_name: name of the OpenAI LLM chain_type: type of chain to use for the retrieval chatbot Returns: RetrievalQA: retrieval chatbot """ # connect to local Chroma embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) # connect to OpenAI LLM with Chroma llm = ChatOpenAI(model_name=model_name, temperature=0, openai_api_key=openai_api_key, max_tokens=5000) chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=db.as_retriever(), return_source_documents=True) return chain def message_construction(result): message = "**Bot Answer:** \n" message += f"{result['result']}\n" source_documents = "**Source Documents:**\n" for d in result['source_documents']: source_documents += f"* *{d.metadata['source']}* - {d.page_content[0:200].encode('unicode_escape').decode('utf-8')}...\n" return message + "\n" + source_documents retrieval_chain = OpenAIWithChroma() with gr.Blocks(theme=gr.themes.Default( primary_hue="blue", secondary_hue="yellow" )) as demo: gr.Markdown(""" # Neurons Lab: Generative AI Chatbot through Document Sources ## Document Sources 1. [Generative AI in Finance and Banking: The Current State and Future Implications](https://www.leewayhertz.com/generative-ai-in-finance-and-banking/#Variational-Autoencoders-(VAEs)) 2. [McKinsey & Company: The economic potential of generative AI](https://www.mckinsey.com/~/media/mckinsey/business%20functions/mckinsey%20digital/our%20insights/the%20economic%20potential%20of%20generative%20ai%20the%20next%20productivity%20frontier/the-economic-potential-of-generative-ai-the-next-productivity-frontier-vf.pdf) 3. [Deloitte: Generative AI is all the rage](https://www2.deloitte.com/content/dam/Deloitte/us/Documents/deloitte-analytics/us-ai-institute-gen-ai-for-enterprises.pdf) ## Prompt Examples - Provide Generative AI use cases for financial services. Print in table view wiht columns: Use Case Name, Description - Provide Generative AI models that fit for Financial Services. Print in table view with columns: Model Name, Model Description, Areas of Application in Finance. - Provide real world example on how Generative AI change Financial Services sector. - What is difference between traditional AI and Generative AI? - Summarise the economic potential of generative AI - How does Generative AI change a future of work? - How Generative AI can personalise customer experience in finance? """) chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.ClearButton([msg, chatbot]) def respond(message, chat_history): result = retrieval_chain({"query": message}) bot_message = message_construction(result) chat_history.append((message, bot_message)) return "", chat_history msg.submit(respond, [msg, chatbot], [msg, chatbot]) demo.launch()