Arnavkumar01's picture
DO I remember why am I doing this ? Fuck no. but am I going to do this FUCK yes
e141e7c
raw
history blame
14 kB
import os
import io
import json
import re
import tempfile
import asyncio
from typing import Optional
import logging
from contextlib import asynccontextmanager
from fastapi import FastAPI, Request, status, Depends, Header, HTTPException
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from dotenv import load_dotenv
from openai import OpenAI
from elevenlabs.client import ElevenLabs
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_postgres.vectorstores import PGVector
from sqlalchemy import create_engine
# --- GRADIO ---
import gradio as gr
# --- SETUP ---
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
logging.getLogger('tensorflow').setLevel(logging.ERROR)
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
load_dotenv()
NEON_DATABASE_URL = os.getenv("NEON_DATABASE_URL")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ELEVENLABS_API_KEY = os.getenv("ELEVENLABS_API_KEY")
SHARED_SECRET = os.getenv("SHARED_SECRET")
# --- CONFIG ---
COLLECTION_NAME = "real_estate_embeddings"
EMBEDDING_MODEL = "hkunlp/instructor-large"
ELEVENLABS_VOICE_NAME = "Leo"
PLANNER_MODEL = "gpt-4o-mini"
ANSWERER_MODEL = "gpt-4o"
TABLE_DESCRIPTIONS = """
- "ongoing_projects_source": Details about projects currently under construction.
- "upcoming_projects_source": Information on future planned projects.
- "completed_projects_source": Facts about projects that are already finished.
- "historical_sales_source": Specific sales records, including price, date, and property ID.
- "past_customers_source": Information about previous customers.
- "feedback_source": Customer feedback and ratings for projects.
"""
# --- CLIENTS ---
embeddings = None
vector_store = None
client_openai = OpenAI(api_key=OPENAI_API_KEY)
client_elevenlabs = None # Initialize as None first
# --- ADDED: DETAILED ELEVENLABS INITIALIZATION LOGGING ---
try:
# Log the key (partially) to verify it's being read
key_preview = ELEVENLABS_API_KEY[:5] + "..." + ELEVENLABS_API_KEY[-4:] if ELEVENLABS_API_KEY and len(ELEVENLABS_API_KEY) > 9 else "None or too short"
logging.info(f"Attempting to initialize ElevenLabs client with key: {key_preview}")
# Ensure key is not None or empty before initializing
if not ELEVENLABS_API_KEY:
raise ValueError("ELEVENLABS_API_KEY environment variable not set or empty.")
client_elevenlabs = ElevenLabs(api_key=ELEVENLABS_API_KEY)
logging.info(f"Initialized ElevenLabs client object. Type: {type(client_elevenlabs)}")
# Try accessing a simple attribute or method to confirm initialization
# Note: This might make a network call during startup
voices = client_elevenlabs.voices.get_all()
logging.info(f"Successfully fetched {len(voices.voices)} voices from ElevenLabs.")
except Exception as e:
logging.error(f"Failed to initialize ElevenLabs client or fetch voices: {e}", exc_info=True)
client_elevenlabs = None # Ensure it's None if init failed
# --- END ADDED LOGGING ---
# --- LIFESPAN ---
@asynccontextmanager
async def lifespan(app: FastAPI):
global embeddings, vector_store
logging.info(f"Loading embedding model: {EMBEDDING_MODEL}")
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
logging.info(f"Connecting to vector store: {COLLECTION_NAME}")
engine = create_engine(NEON_DATABASE_URL, pool_pre_ping=True)
vector_store = PGVector(
connection=engine,
collection_name=COLLECTION_NAME,
embeddings=embeddings,
)
logging.info("Vector store ready.")
yield
logging.info("Shutting down.")
# --- ADDED: LIBRARY VERSION LOGGING ---
try:
import elevenlabs
logging.info(f"Found elevenlabs library version: {elevenlabs.__version__}")
except ImportError:
logging.error("Could not import elevenlabs library!")
# --- END ADDED LOGGING ---
app = FastAPI(lifespan=lifespan)
# --- PROMPTS ---
QUERY_FORMULATION_PROMPT = """
You are a query analysis agent. Transform the user's query into a precise search query and determine the correct table to filter by.
**Available Tables:**
{table_descriptions}
**User's Query:** "{user_query}"
**Task:**
1. Rephrase into a clear, keyword-focused English search query.
2. If status keywords (ongoing, completed, upcoming, etc.) are present, pick the matching table.
3. If no status keyword, set filter_table to null.
4. Return JSON: {{"search_query": "...", "filter_table": "table_name or null"}}
"""
ANSWER_SYSTEM_PROMPT = """
You are an expert AI assistant for a premier real estate developer.
## CORE KNOWLEDGE
- Cities: Pune, Mumbai, Bengaluru, Delhi, Chennai, Hyderabad, Goa, Gurgaon, Kolkata.
- Properties: Luxury apartments, villas, commercial.
- Budget: 45 lakhs to 5 crores.
## RULES
1. Match user language (Hinglish → Hinglish, English → English).
2. Use CONTEXT if available, else use core knowledge.
3. Only answer real estate questions.
"""
# --- AUDIO & LLM HELPERS ---
def transcribe_audio(audio_path: str, audio_bytes: bytes) -> str:
for attempt in range(3):
try:
audio_file = io.BytesIO(audio_bytes)
filename = os.path.basename(audio_path) # e.g., "audio.wav"
logging.info(f"Transcribing audio: {filename} ({len(audio_bytes)} bytes)")
transcript = client_openai.audio.transcriptions.create(
model="whisper-1",
file=(filename, audio_file) # ← Critical: gives format hint
)
text = transcript.text.strip()
# Hinglish transliteration
if re.search(r'[\u0900-\u097F]', text):
response = client_openai.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": f"Transliterate to Roman (Hinglish): {text}"}],
temperature=0.0
)
text = response.choices[0].message.content.strip()
logging.info(f"Transcribed: {text}")
return text
except Exception as e:
logging.error(f"Transcription error (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
if attempt == 2:
return ""
return ""
# --- UPDATED generate_elevenlabs_sync with check ---
def generate_elevenlabs_sync(text: str, voice: str) -> bytes:
# --- ADDED THIS CHECK ---
if client_elevenlabs is None:
logging.error("ElevenLabs client is not initialized. Cannot generate audio.")
return b''
# --- END ADDED CHECK ---
for attempt in range(3):
try:
# This call might still fail if init succeeded but key is bad at runtime
logging.info(f"Calling ElevenLabs generate for voice '{voice}'...")
audio_data = client_elevenlabs.generate(
text=text,
voice=voice,
model="eleven_multilingual_v2",
output_format="mp3_44100_128"
)
# Check if generate returns bytes directly or needs iteration (depends on exact version/method)
if isinstance(audio_data, bytes):
logging.info(f"ElevenLabs generate returned {len(audio_data)} bytes.")
return audio_data
else:
# Handle streaming iterator if necessary
chunks = b""
for chunk in audio_data:
chunks += chunk
logging.info(f"ElevenLabs generate streamed {len(chunks)} bytes.")
return chunks
except Exception as e:
logging.error(f"ElevenLabs error during generate (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
if attempt == 2:
return b''
return b''
# --- END UPDATED FUNCTION ---
async def formulate_search_plan(user_query: str) -> dict:
logging.info(f"Formulating search plan for query: {user_query}")
for attempt in range(3):
try:
# Format the prompt here with BOTH variables
formatted_prompt = QUERY_FORMULATION_PROMPT.format(
table_descriptions=TABLE_DESCRIPTIONS,
user_query=user_query
)
response = await run_in_threadpool(
client_openai.chat.completions.create,
model=PLANNER_MODEL,
messages=[{"role": "user", "content": formatted_prompt}], # Use the fully formatted prompt
response_format={"type": "json_object"},
temperature=0.0
)
# Log the raw response BEFORE trying to parse
raw_response_content = response.choices[0].message.content
logging.info(f"Raw Planner LLM response content: {raw_response_content}")
# Try parsing
plan = json.loads(raw_response_content)
logging.info(f"Successfully parsed search plan: {plan}")
return plan
except Exception as e:
# Log the specific error during parsing or API call, with traceback
logging.error(f"Planner error (attempt {attempt+1}): {e}", exc_info=True)
if attempt == 2:
logging.warning("Planner failed after 3 attempts. Using fallback.")
return {"search_query": user_query, "filter_table": None}
# Fallback if loop finishes unexpectedly
logging.error("Planner loop finished unexpectedly. Using fallback.")
return {"search_query": user_query, "filter_table": None}
async def get_agent_response(user_text: str) -> str:
for attempt in range(3):
try:
plan = await formulate_search_plan(user_text)
search_query = plan.get("search_query", user_text)
filter_table = plan.get("filter_table")
search_filter = {"source_table": filter_table} if filter_table else {}
docs = await run_in_threadpool(
vector_store.similarity_search,
search_query, k=3, filter=search_filter
)
if not docs:
docs = await run_in_threadpool(vector_store.similarity_search, search_query, k=3)
context = "\n\n".join([d.page_content for d in docs])
response = await run_in_threadpool(
client_openai.chat.completions.create,
model=ANSWERER_MODEL,
messages=[
{"role": "system", "content": ANSWER_SYSTEM_PROMPT},
{"role": "system", "content": f"CONTEXT:\n{context}"},
{"role": "user", "content": f"Question: {user_text}"}
]
)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"RAG error (attempt {attempt+1}): {e}", exc_info=True) # Added exc_info
if attempt == 2:
return "Sorry, I couldn't respond. Please try again."
return "Sorry, I couldn't respond."
# --- AUTH ENDPOINT ---
class TextQuery(BaseModel):
query: str
async def verify_token(x_auth_token: str = Header(...)):
if not SHARED_SECRET or x_auth_token != SHARED_SECRET:
logging.warning("Auth failed for /test-text-query")
raise HTTPException(status_code=401, detail="Invalid token")
logging.info("Auth passed")
@app.post("/test-text-query", dependencies=[Depends(verify_token)])
async def test_text_query_endpoint(query: TextQuery):
logging.info(f"Text query: {query.query}")
response = await get_agent_response(query.query)
return {"response": response}
# --- GRADIO AUDIO PROCESSING ---
async def process_audio(audio_path):
if not audio_path or not os.path.exists(audio_path):
return None, "No valid audio file received."
try:
# Read raw bytes
with open(audio_path, "rb") as f:
audio_bytes = f.read()
if len(audio_bytes) == 0:
return None, "Empty audio file."
# 1. Transcribe — pass path + bytes
user_text = await run_in_threadpool(transcribe_audio, audio_path, audio_bytes)
if not user_text:
return None, "Couldn't understand audio. Try again."
logging.info(f"User: {user_text}")
# 2. AI Response
agent_response = await get_agent_response(user_text)
if not agent_response:
return None, "No response generated."
logging.info(f"AI: {agent_response[:100]}...")
# 3. Generate Speech
ai_audio_bytes = await run_in_threadpool(
generate_elevenlabs_sync, agent_response, ELEVENLABS_VOICE_NAME
)
if not ai_audio_bytes:
# Return the text response even if TTS fails
logging.error("Failed to generate voice. Returning text only.")
return None, f"**You:** {user_text}\n\n**AI:** {agent_response}\n\n_(Audio generation failed)_"
# Save to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
f.write(ai_audio_bytes)
out_path = f.name
logging.info(f"Saved generated audio to temp file: {out_path}")
return out_path, f"**You:** {user_text}\n\n**AI:** {agent_response}"
except Exception as e:
logging.error(f"Audio processing error: {e}", exc_info=True) # Added exc_info
return None, f"Error: {str(e)}"
# --- GRADIO UI ---
with gr.Blocks(title="Real Estate AI") as demo:
gr.Markdown("# Real Estate Voice Assistant")
gr.Markdown("Ask about projects in Pune, Mumbai, Bengaluru, etc.")
with gr.Row():
inp = gr.Audio(sources=["microphone"], type="filepath", label="Speak")
out_audio = gr.Audio(label="AI Response", type="filepath")
out_text = gr.Textbox(label="Conversation", lines=8)
inp.change(process_audio, inp, [out_audio, out_text])
# Removed examples to avoid FileNotFoundError with text inputs
# gr.Examples(examples=[], inputs=inp)
# --- MOUNT GRADIO ---
app = gr.mount_gradio_app(app, demo, path="/")