import gradio as gr import torch import numpy as np import torch import torchvision.models as models from torch import nn from model import * from albumentations import ( HorizontalFlip, VerticalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90, Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue, IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, RandomResizedCrop, IAASharpen, IAAEmboss, RandomBrightnessContrast, Flip, OneOf, Compose, Normalize, Cutout, CoarseDropout, ShiftScaleRotate, CenterCrop, Resize, Rotate, ShiftScaleRotate, CenterCrop, Crop, Resize, Rotate, RandomShadow, RandomSizedBBoxSafeCrop, ChannelShuffle, MotionBlur,Lambda,SmallestMaxSize ) from albumentations.pytorch import ToTensorV2 # Your Albumentations transformations test_transforms = Compose([ Resize(224, 224), Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ToTensorV2(), ]) def load_cub200_classes(): """ This function loads the classes from the classes.txt file and returns a dictionary """ with open("classes.txt", encoding="utf-8") as f: classes = f.read().splitlines() # convert classes to dictionary separating the lines by the first space classes = {int(line.split(" ")[0]) : line.split(" ")[1] for line in classes} # return the classes dictionary return classes def load_model(): """ This function loads the trained model and returns it """ model = models.resnet50(pretrained=True) # Freeze the initial layers up to a certain point (e.g., layer 4) freeze_layers = 4 for idx, (name, param) in enumerate(model.named_parameters()): if idx < freeze_layers: param.requires_grad = False # Replace the final fully connected layer for the new task num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, 200) # Add dropout layers model = nn.Sequential( model, nn.Dropout(0.8), # Adjust the dropout rate as needed nn.Linear(200, 200) # Add additional fully connected layer ) # Load the state dictionary from the file state_dict = torch.load("resnet50_7511.pt",map_location=torch.device('cpu')) # Load the state dictionary into the model object model.load_state_dict(state_dict) # # Load actual model # model = torch.load("resnet18.pth", map_location=torch.device('cpu')) # set the model to evaluation mode model.eval() # return the model return model def predict_image(image): """ This function takes an image as input and returns the class label """ # load the model model = load_model() # model.eval() # load the classes classes = load_cub200_classes() # Apply Albumentations transformations transformed_image = test_transforms(image=image)['image'] # Convert the image to a PyTorch tensor tensor_image = transformed_image.unsqueeze(0) # Make prediction with torch.no_grad(): output = model(tensor_image) # Assuming the output is a tensor representing class probabilities probabilities = torch.nn.functional.softmax(output[0], dim=0).numpy() # Get the class with the highest probability predicted_class = np.argmax(probabilities) # Return the class label return "Predicted Class: " + classes[predicted_class+1] # create a gradio interface gr.Interface(fn=predict_image, inputs="image", outputs="text").launch()