from fastai import * from fastai.core import * from fastai.torch_core import * from fastai.callbacks import hook_outputs import torchvision.models as models class FeatureLoss(nn.Module): def __init__(self, layer_wgts=[20, 70, 10]): super().__init__() self.m_feat = models.vgg16_bn(True).features.cuda().eval() requires_grad(self.m_feat, False) blocks = [ i - 1 for i, o in enumerate(children(self.m_feat)) if isinstance(o, nn.MaxPool2d) ] layer_ids = blocks[2:5] self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel'] + [f'feat_{i}' for i in range(len(layer_ids))] self.base_loss = F.l1_loss def _make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self._make_features(target, clone=True) in_feat = self._make_features(input) self.feat_losses = [self.base_loss(input, target)] self.feat_losses += [ self.base_loss(f_in, f_out) * w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts) ] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() # Refactored code, originally from https://github.com/VinceMarron/style_transfer class WassFeatureLoss(nn.Module): def __init__(self, layer_wgts=[5, 15, 2], wass_wgts=[3.0, 0.7, 0.01]): super().__init__() self.m_feat = models.vgg16_bn(True).features.cuda().eval() requires_grad(self.m_feat, False) blocks = [ i - 1 for i, o in enumerate(children(self.m_feat)) if isinstance(o, nn.MaxPool2d) ] layer_ids = blocks[2:5] self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.wass_wgts = wass_wgts self.metric_names = ( ['pixel'] + [f'feat_{i}' for i in range(len(layer_ids))] + [f'wass_{i}' for i in range(len(layer_ids))] ) self.base_loss = F.l1_loss def _make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def _calc_2_moments(self, tensor): chans = tensor.shape[1] tensor = tensor.view(1, chans, -1) n = tensor.shape[2] mu = tensor.mean(2) tensor = (tensor - mu[:, :, None]).squeeze(0) # Prevents nasty bug that happens very occassionally- divide by zero. Why such things happen? if n == 0: return None, None cov = torch.mm(tensor, tensor.t()) / float(n) return mu, cov def _get_style_vals(self, tensor): mean, cov = self._calc_2_moments(tensor) if mean is None: return None, None, None eigvals, eigvects = torch.symeig(cov, eigenvectors=True) eigroot_mat = torch.diag(torch.sqrt(eigvals.clamp(min=0))) root_cov = torch.mm(torch.mm(eigvects, eigroot_mat), eigvects.t()) tr_cov = eigvals.clamp(min=0).sum() return mean, tr_cov, root_cov def _calc_l2wass_dist( self, mean_stl, tr_cov_stl, root_cov_stl, mean_synth, cov_synth ): tr_cov_synth = torch.symeig(cov_synth, eigenvectors=True)[0].clamp(min=0).sum() mean_diff_squared = (mean_stl - mean_synth).pow(2).sum() cov_prod = torch.mm(torch.mm(root_cov_stl, cov_synth), root_cov_stl) var_overlap = torch.sqrt( torch.symeig(cov_prod, eigenvectors=True)[0].clamp(min=0) + 1e-8 ).sum() dist = mean_diff_squared + tr_cov_stl + tr_cov_synth - 2 * var_overlap return dist def _single_wass_loss(self, pred, targ): mean_test, tr_cov_test, root_cov_test = targ mean_synth, cov_synth = self._calc_2_moments(pred) loss = self._calc_l2wass_dist( mean_test, tr_cov_test, root_cov_test, mean_synth, cov_synth ) return loss def forward(self, input, target): out_feat = self._make_features(target, clone=True) in_feat = self._make_features(input) self.feat_losses = [self.base_loss(input, target)] self.feat_losses += [ self.base_loss(f_in, f_out) * w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts) ] styles = [self._get_style_vals(i) for i in out_feat] if styles[0][0] is not None: self.feat_losses += [ self._single_wass_loss(f_pred, f_targ) * w for f_pred, f_targ, w in zip(in_feat, styles, self.wass_wgts) ] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove()