from chatterbot import ChatBot import spacy spacy.cli.download("en_core_web_sm") spacy.cli.download("en") nlp = spacy.load('en_core_web_sm') chatbot = ChatBot( 'CoronaBot', storage_adapter='chatterbot.storage.SQLStorageAdapter', logic_adapters=[ 'chatterbot.logic.MathematicalEvaluation', 'chatterbot.logic.TimeLogicAdapter', 'chatterbot.logic.BestMatch', { 'import_path': 'chatterbot.logic.BestMatch', 'default_response': 'I am sorry, but I do not understand. I am still learning.', 'maximum_similarity_threshold': 0.90 } ], database_uri='sqlite:///database.sqlite3' ) # Training With Own Questions from chatterbot.trainers import ListTrainer trainer = ListTrainer(chatbot) training_data_quesans = open('training_data/ques_ans.txt').read().splitlines() training_data_personal = open('training_data/personal_ques.txt').read().splitlines() training_data = training_data_quesans + training_data_personal trainer.train(training_data) # Training With Corpus from chatterbot.trainers import ChatterBotCorpusTrainer trainer_corpus = ChatterBotCorpusTrainer(chatbot) trainer_corpus.train( 'chatterbot.corpus.english' )