import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image from PIL import Image import numpy as np from controlnet_aux import OpenposeDetector from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) checkpoint = "lllyasviel/control_v11p_sd15_openpose" processor = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() def openposeImage(image, prompt): prompt += "oil painting, yoji shinakawa, studio gainax, y2k design, dramatic lighting" control_image = processor(image, hand_and_face=True) generator = torch.manual_seed(0) image = pipe(prompt, num_inference_steps=30, generator=generator, image=control_image).images[0] return image import gradio as gr gr.Interface(fn=openposeImage, inputs=[gr.Image(shape=(512, 512)), gr.inputs.Textbox(label="Text Prompt")], outputs=gr.Image(shape=(512, 512))).launch(inline = False)