import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import VitsModel, VitsTokenizer, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) model = VitsModel.from_pretrained("Matthijs/mms-tts-deu") tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu") def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"}) return outputs["text"] def synthesise(text): inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(inputs["input_ids"]) speech = outputs.audio[0] return speech def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for Italian to Dutch speech translation using OpenAI Whisper and MMS models """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()