import os import argparse from src.utils.config_loader import Config,constants,set_seed from src.utils import config_loader from src.utils.script_utils import validate_config import importlib def visualize_results(args): config_file_path = args.config_file config = Config(config_file_path) # validate config validate_config(config) # set config globally & set seed config_loader.config = config set_seed(config.seed) # now load model and visualize the results model_dir = constants.ARTIFACT_MODEL_DIR model_save_path = os.path.join(model_dir,"model.weights.h5") if not os.path.exists(model_save_path): raise Exception("No model found:","first use train.py to train and export a model") Model = importlib.import_module(f"src.{config.task}.model.models.{config.model}").Model model = Model(model_save_path) # model.train_ds model.show_results() def main(): parser = argparse.ArgumentParser(description="visualize results based on config yaml file and trained model") parser.add_argument("config_file",type=str) args = parser.parse_args() visualize_results(args) if __name__=="__main__": main()