File size: 1,335 Bytes
317c901 ec2a6ff c6d39f4 ec2a6ff 10b4b12 ec2a6ff 38a4f39 ec2a6ff 05ede16 1828143 05ede16 1828143 fbf9586 42b4f1b ec2a6ff b5e3de3 1828143 317c901 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from PIL import Image, ImageDraw
from transformers import pipeline
import numpy as np
def plot_results(image, results, threshold=0.7):
image = Image.fromarray(np.uint8(image))
draw = ImageDraw.Draw(image)
for result in results:
score = result["score"]
label = result["label"]
box = list(result["box"].values())
if score > threshold:
x, y, x2, y2 = tuple(box)
draw.rectangle((x, y, x2, y2), outline="red", width=1)
draw.text((x, y), label, fill="white")
draw.text(
(x + 0.5, y - 0.5),
text=str(score),
fill="green" if score > 0.7 else "red",
)
return image
def predict(image):
# make the object detection pipeline
obj_detector = pipeline(
"object-detection", model="Antoine101/detr-resnet-50-dc5-fashionpedia-finetuned"
)
results = obj_detector(image)
return plot_results(image, results)
title = "Are you fashion?"
description = """
DETR model finetuned on "detection-datasets/fashionpedia" for apparels detection.
"""
demo = gr.Interface(
fn=predict,
inputs=gr.Image(label="Input Image", type="pil"),
outputs="image",
examples=[["example1.jpg"]],
title=title,
description=description
)
demo.launch()
|