import torch.nn as nn from .trident_conv import MultiScaleTridentConv class ResidualBlock(nn.Module): def __init__(self, in_planes, planes, norm_layer=nn.InstanceNorm2d, stride=1, dilation=1, ): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, dilation=dilation, padding=dilation, stride=stride, bias=False) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, dilation=dilation, padding=dilation, bias=False) self.relu = nn.ReLU(inplace=True) self.norm1 = norm_layer(planes) self.norm2 = norm_layer(planes) if not stride == 1 or in_planes != planes: self.norm3 = norm_layer(planes) if stride == 1 and in_planes == planes: self.downsample = None else: self.downsample = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3) def forward(self, x): y = x y = self.relu(self.norm1(self.conv1(y))) y = self.relu(self.norm2(self.conv2(y))) if self.downsample is not None: x = self.downsample(x) return self.relu(x + y) class CNNEncoder(nn.Module): def __init__(self, output_dim=128, norm_layer=nn.InstanceNorm2d, num_output_scales=1, **kwargs, ): super(CNNEncoder, self).__init__() self.num_branch = num_output_scales feature_dims = [64, 96, 128] self.conv1 = nn.Conv2d(3, feature_dims[0], kernel_size=7, stride=2, padding=3, bias=False) # 1/2 self.norm1 = norm_layer(feature_dims[0]) self.relu1 = nn.ReLU(inplace=True) self.in_planes = feature_dims[0] self.layer1 = self._make_layer(feature_dims[0], stride=1, norm_layer=norm_layer) # 1/2 self.layer2 = self._make_layer(feature_dims[1], stride=2, norm_layer=norm_layer) # 1/4 # highest resolution 1/4 or 1/8 stride = 2 if num_output_scales == 1 else 1 self.layer3 = self._make_layer(feature_dims[2], stride=stride, norm_layer=norm_layer, ) # 1/4 or 1/8 self.conv2 = nn.Conv2d(feature_dims[2], output_dim, 1, 1, 0) if self.num_branch > 1: if self.num_branch == 4: strides = (1, 2, 4, 8) elif self.num_branch == 3: strides = (1, 2, 4) elif self.num_branch == 2: strides = (1, 2) else: raise ValueError self.trident_conv = MultiScaleTridentConv(output_dim, output_dim, kernel_size=3, strides=strides, paddings=1, num_branch=self.num_branch, ) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)): if m.weight is not None: nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) def _make_layer(self, dim, stride=1, dilation=1, norm_layer=nn.InstanceNorm2d): layer1 = ResidualBlock(self.in_planes, dim, norm_layer=norm_layer, stride=stride, dilation=dilation) layer2 = ResidualBlock(dim, dim, norm_layer=norm_layer, stride=1, dilation=dilation) layers = (layer1, layer2) self.in_planes = dim return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.norm1(x) x = self.relu1(x) x = self.layer1(x) # 1/2 x = self.layer2(x) # 1/4 x = self.layer3(x) # 1/8 or 1/4 x = self.conv2(x) if self.num_branch > 1: out = self.trident_conv([x] * self.num_branch) # high to low res else: out = [x] return out