# Copyright (c) OpenMMLab. All rights reserved. import torch.nn as nn from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['roi_align_rotated_forward', 'roi_align_rotated_backward']) class RoIAlignRotatedFunction(Function): @staticmethod def symbolic(g, features, rois, out_size, spatial_scale, sample_num, aligned, clockwise): if isinstance(out_size, int): out_h = out_size out_w = out_size elif isinstance(out_size, tuple): assert len(out_size) == 2 assert isinstance(out_size[0], int) assert isinstance(out_size[1], int) out_h, out_w = out_size else: raise TypeError( '"out_size" must be an integer or tuple of integers') return g.op( 'mmcv::MMCVRoIAlignRotated', features, rois, output_height_i=out_h, output_width_i=out_h, spatial_scale_f=spatial_scale, sampling_ratio_i=sample_num, aligned_i=aligned, clockwise_i=clockwise) @staticmethod def forward(ctx, features, rois, out_size, spatial_scale, sample_num=0, aligned=True, clockwise=False): if isinstance(out_size, int): out_h = out_size out_w = out_size elif isinstance(out_size, tuple): assert len(out_size) == 2 assert isinstance(out_size[0], int) assert isinstance(out_size[1], int) out_h, out_w = out_size else: raise TypeError( '"out_size" must be an integer or tuple of integers') ctx.spatial_scale = spatial_scale ctx.sample_num = sample_num ctx.aligned = aligned ctx.clockwise = clockwise ctx.save_for_backward(rois) ctx.feature_size = features.size() batch_size, num_channels, data_height, data_width = features.size() num_rois = rois.size(0) output = features.new_zeros(num_rois, num_channels, out_h, out_w) ext_module.roi_align_rotated_forward( features, rois, output, pooled_height=out_h, pooled_width=out_w, spatial_scale=spatial_scale, sample_num=sample_num, aligned=aligned, clockwise=clockwise) return output @staticmethod def backward(ctx, grad_output): feature_size = ctx.feature_size spatial_scale = ctx.spatial_scale aligned = ctx.aligned clockwise = ctx.clockwise sample_num = ctx.sample_num rois = ctx.saved_tensors[0] assert feature_size is not None batch_size, num_channels, data_height, data_width = feature_size out_w = grad_output.size(3) out_h = grad_output.size(2) grad_input = grad_rois = None if ctx.needs_input_grad[0]: grad_input = rois.new_zeros(batch_size, num_channels, data_height, data_width) ext_module.roi_align_rotated_backward( grad_output.contiguous(), rois, grad_input, pooled_height=out_h, pooled_width=out_w, spatial_scale=spatial_scale, sample_num=sample_num, aligned=aligned, clockwise=clockwise) return grad_input, grad_rois, None, None, None, None, None roi_align_rotated = RoIAlignRotatedFunction.apply class RoIAlignRotated(nn.Module): """RoI align pooling layer for rotated proposals. It accepts a feature map of shape (N, C, H, W) and rois with shape (n, 6) with each roi decoded as (batch_index, center_x, center_y, w, h, angle). The angle is in radian. Args: out_size (tuple): h, w spatial_scale (float): scale the input boxes by this number sample_num (int): number of inputs samples to take for each output sample. 0 to take samples densely for current models. aligned (bool): if False, use the legacy implementation in MMDetection. If True, align the results more perfectly. Default: True. clockwise (bool): If True, the angle in each proposal follows a clockwise fashion in image space, otherwise, the angle is counterclockwise. Default: False. Note: The implementation of RoIAlign when aligned=True is modified from https://github.com/facebookresearch/detectron2/ The meaning of aligned=True: Given a continuous coordinate c, its two neighboring pixel indices (in our pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled from the underlying signal at continuous coordinates 0.5 and 1.5). But the original roi_align (aligned=False) does not subtract the 0.5 when computing neighboring pixel indices and therefore it uses pixels with a slightly incorrect alignment (relative to our pixel model) when performing bilinear interpolation. With `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5 prior to calling roi_align. This produces the correct neighbors; The difference does not make a difference to the model's performance if ROIAlign is used together with conv layers. """ def __init__(self, out_size, spatial_scale, sample_num=0, aligned=True, clockwise=False): super(RoIAlignRotated, self).__init__() self.out_size = out_size self.spatial_scale = float(spatial_scale) self.sample_num = int(sample_num) self.aligned = aligned self.clockwise = clockwise def forward(self, features, rois): return RoIAlignRotatedFunction.apply(features, rois, self.out_size, self.spatial_scale, self.sample_num, self.aligned, self.clockwise)