from typing import Tuple import torch from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext( '_ext', ['three_interpolate_forward', 'three_interpolate_backward']) class ThreeInterpolate(Function): """Performs weighted linear interpolation on 3 features. Please refer to `Paper of PointNet++ `_ for more details. """ @staticmethod def forward(ctx, features: torch.Tensor, indices: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: """ Args: features (Tensor): (B, C, M) Features descriptors to be interpolated indices (Tensor): (B, n, 3) index three nearest neighbors of the target features in features weight (Tensor): (B, n, 3) weights of interpolation Returns: Tensor: (B, C, N) tensor of the interpolated features """ assert features.is_contiguous() assert indices.is_contiguous() assert weight.is_contiguous() B, c, m = features.size() n = indices.size(1) ctx.three_interpolate_for_backward = (indices, weight, m) output = torch.cuda.FloatTensor(B, c, n) ext_module.three_interpolate_forward( features, indices, weight, output, b=B, c=c, m=m, n=n) return output @staticmethod def backward( ctx, grad_out: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Args: grad_out (Tensor): (B, C, N) tensor with gradients of outputs Returns: Tensor: (B, C, M) tensor with gradients of features """ idx, weight, m = ctx.three_interpolate_for_backward B, c, n = grad_out.size() grad_features = torch.cuda.FloatTensor(B, c, m).zero_() grad_out_data = grad_out.data.contiguous() ext_module.three_interpolate_backward( grad_out_data, idx, weight, grad_features.data, b=B, c=c, n=n, m=m) return grad_features, None, None three_interpolate = ThreeInterpolate.apply