import streamlit as st
from dotenv import load_dotenv
import pickle
from huggingface_hub import Repository
from PyPDF2 import PdfReader
from streamlit_extras.add_vertical_space import add_vertical_space
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import OpenAI
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
import os
# Step 1: Clone the Dataset Repository
repo = Repository(
local_dir="Private_Book", # Local directory to clone the repository
repo_type="dataset", # Specify that this is a dataset repository
clone_from="Anne31415/Private_Book", # Replace with your repository URL
token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate
)
repo.git_pull() # Pull the latest changes (if any)
# Step 2: Load the PDF File
pdf_file_path = "Private_Book/Glossar_HELP_DESK_combi.pdf" # Replace with your PDF file path
with st.sidebar:
st.title('BinDoc GmbH')
st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.")
add_vertical_space(1) # Adjust as per the desired spacing
st.markdown("""
Hello! I’m here to assist you with:
📘 **Glossary Inquiries:**
I can clarify terms like "DiGA", "AOP", or "BfArM", providing clear and concise explanations to help you understand our content better.
🆘 **Help Page Navigation:**
Ask me if you forgot your password or want to know more about topics related to the platform.
📰 **Latest Whitepapers Insights:**
Curious about our recent publications? Feel free to ask about our latest whitepapers!
""", unsafe_allow_html=True)
add_vertical_space(1) # Adjust as per the desired spacing
glossary_option = st.selectbox(
'Want to see more Glossary Topics to ask about?',
('Basisfallwert', 'Cash Flow', 'Arzneimittelgesetz (AMG)')
)
add_vertical_space(1)
whitepaper_option = st.selectbox(
'Did you know we\'ve authored some really insightful and helpful whitepapers as well?',
('Title1', 'Title2', 'Title3')
)
st.write('Made with ❤️ by BinDoc GmbH')
api_key = os.getenv("OPENAI_API_KEY")
# Retrieve the API key from st.secrets
def load_pdf(file_path):
pdf_reader = PdfReader(file_path)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text=text)
store_name, _ = os.path.splitext(os.path.basename(file_path))
if os.path.exists(f"{store_name}.pkl"):
with open(f"{store_name}.pkl", "rb") as f:
VectorStore = pickle.load(f)
else:
embeddings = OpenAIEmbeddings()
VectorStore = FAISS.from_texts(chunks, embedding=embeddings)
with open(f"{store_name}.pkl", "wb") as f:
pickle.dump(VectorStore, f)
return VectorStore
def load_chatbot():
return load_qa_chain(llm=OpenAI(), chain_type="stuff")
def main():
# Main content
st.title("Welcome to BinDocs ChatBot! 🤖")
# Directly specifying the path to the PDF file
pdf_path = pdf_file_path
if not os.path.exists(pdf_path):
st.error("File not found. Please check the file path.")
return
if "chat_history" not in st.session_state:
st.session_state['chat_history'] = []
display_chat_history(st.session_state['chat_history'])
st.write("", unsafe_allow_html=True)
st.write("