import streamlit as st from PIL import Image import time from dotenv import load_dotenv import pickle from huggingface_hub import Repository from PyPDF2 import PdfReader from streamlit_extras.add_vertical_space import add_vertical_space from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback import os import traceback import pandas as pd import pydeck as pdk from urllib.error import URLError # Initialize session state variables if 'chat_history_page1' not in st.session_state: st.session_state['chat_history_page1'] = [] # Step 1: Clone the Dataset Repository repo = Repository( local_dir="Private_Book", # Local directory to clone the repository repo_type="dataset", # Specify that this is a dataset repository clone_from="Anne31415/Private_Book", # Replace with your repository URL token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate ) repo.git_pull() # Pull the latest changes (if any) # Step 2: Load the PDF File pdf_path = "Private_Book/grunddaten-krankenhaeuser-2016.pdf" # Replace with your PDF file path api_key = os.getenv("OPENAI_API_KEY") # Retrieve the API key from st.secrets # Updated caching mechanism using st.cache_data #@st.cache_data(persist="disk") def load_vector_store(file_path, store_name, force_reload=False): try: if force_reload or not os.path.exists(f"{store_name}.pkl"): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) text = load_pdf_text(file_path) chunks = text_splitter.split_text(text=text) embeddings = OpenAIEmbeddings() VectorStore = FAISS.from_texts(chunks, embedding=embeddings) # Inspect the VectorStore object print("Inspecting VectorStore object...") print("Type of VectorStore:", type(VectorStore)) print("Attributes of VectorStore:", dir(VectorStore)) # Additional specific inspections if necessary # for example, if VectorStore has an attribute 'some_attribute': # print("VectorStore.some_attribute:", VectorStore.some_attribute) with open(f"{store_name}.pkl", "wb") as f: pickle.dump(VectorStore, f) else: with open(f"{store_name}.pkl", "rb") as f: VectorStore = pickle.load(f) return VectorStore except Exception as e: st.error(f"An error occurred: {e}") traceback.print_exc() return None # Utility function to load text from a PDF def load_pdf_text(file_path): pdf_reader = PdfReader(file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() or "" # Add fallback for pages where text extraction fails return text def load_chatbot(): return load_qa_chain(llm=OpenAI(), chain_type="stuff") def display_chat_history(chat_history): for chat in chat_history: background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf" st.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) def page1(): try: hide_streamlit_style = """ """ st.markdown(hide_streamlit_style, unsafe_allow_html=True) col1, col2 = st.columns([3, 1]) with col1: st.title("Welcome to BinDocs ChatBot!") with col2: image = Image.open('BinDoc Logo (Quadratisch).png') st.image(image, use_column_width='always') if not os.path.exists(pdf_path): st.error("File not found. Please check the file path.") return VectorStore = load_vector_store(pdf_path, "vector_store_page1", force_reload=False) display_chat_history(st.session_state['chat_history_page1']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) query = st.text_input("Ask questions about your PDF file (in any preferred language):") add_vertical_space(2) col1, col2 = st.columns(2) with col1: if st.button("Was kann ich mit dem Prognose-Analyse-Tool machen?"): query = "Was kann ich mit dem Prognose-Analyse-Tool machen?" if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"): query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?" if st.button("Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?"): query = "Ich habe mein Meta-Password vergessen, wie kann ich es zurücksetzen?" with col2: if st.button("Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat."): query = "Dies ist eine reine Test Frage, welche aber eine ausreichende Länge hat." if st.button("Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?"): query = "Was sagt mir denn generell die wundervolle Bevölkerungsentwicklung?" if st.button("Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?"): query = "Ob ich hier wohl viel schreibe, dass die Fragen vom Layout her passen?" if query: st.session_state['chat_history_page1'].append(("User", query, "new")) start_time = time.time() with st.spinner('Bot is thinking...'): chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=3) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=query) end_time = time.time() duration = end_time - start_time st.text(f"Response time: {duration:.2f} seconds") st.session_state['chat_history_page1'].append(("Bot", response, "new")) new_messages = st.session_state['chat_history_page1'][-2:] for chat in new_messages: background_color = "#ffeecf" st.markdown(f"
{chat[0]}: {chat[1]}
", unsafe_allow_html=True) query = "" st.session_state['chat_history_page1'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page1']] except Exception as e: st.error(f"Upsi, an unexpected error occurred: {e}") def page2(): st.title('BinDoc GmbH') def main(): # Sidebar content with st.sidebar: st.title('BinDoc GmbH') st.markdown("Experience revolutionary interaction with BinDocs Chat App, leveraging state-of-the-art AI technology.") add_vertical_space(1) page = st.sidebar.selectbox("Choose a page", ["Document Analysis Bot", "Coding Assistance Bot"]) add_vertical_space(1) st.write('Made with ❤️ by BinDoc GmbH') # Main area content based on page selection if page == "Document Analysis Bot": page1() elif page == "Coding Assistance Bot": page2() if __name__ == "__main__": main()