import gradio as gr import copy from llama_cpp import Llama from huggingface_hub import hf_hub_download import chromadb from sentence_transformers import SentenceTransformer import logging # Initialize logging logging.basicConfig(level=logging.INFO) # Initialize the Llama model llm = Llama( model_path=hf_hub_download( repo_id="microsoft/Phi-3-mini-4k-instruct-gguf", filename="Phi-3-mini-4k-instruct-q4.gguf", ), n_ctx=2048, n_gpu_layers=50, # Adjust based on your VRAM ) # Initialize ChromaDB Vector Store class VectorStore: def __init__(self, collection_name): self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1') self.chroma_client = chromadb.Client() self.collection = self.chroma_client.create_collection(name=collection_name) def populate_vectors(self, texts, ids): embeddings = self.embedding_model.encode(texts, batch_size=32).tolist() for text, embedding, doc_id in zip(texts, embeddings, ids): self.collection.add(embeddings=[embedding], documents=[text], ids=[doc_id]) def search_context(self, query, n_results=1): query_embedding = self.embedding_model.encode([query]).tolist() results = self.collection.query(query_embeddings=query_embedding, n_results=n_results) return results['documents'] # Example initialization (assuming you've already populated the vector store) vector_store = VectorStore("embedding_vector") def generate_text( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Retrieve context from vector store context_results = vector_store.search_context(message, n_results=1) context = context_results[0] if context_results else "" input_prompt = f"[INST] <>\n{system_message}\n<>\n\n {context}\n" for interaction in history: input_prompt += f"{interaction[0]} [/INST] {interaction[1]} [INST] " input_prompt += f"{message} [/INST] " logging.info("Input prompt:\n%s", input_prompt) # Debugging output temp = "" output = llm( input_prompt, temperature=temperature, top_p=top_p, top_k=40, repeat_penalty=1.1, max_tokens=max_tokens, stop=["", " \n", "ASSISTANT:", "USER:", "SYSTEM:"], stream=True, ) for out in output: temp += out["choices"][0]["text"] logging.info("Model output:\n%s", temp) # Log model output yield temp # Define the Gradio interface demo = gr.Interface( fn=generate_text, title="LLM Chatbot with ChromaDB Integration", description="Generate responses based on context and user queries.", examples=[ ["I have leftover rice, what can I make out of it?"], ["Can I make lunch for two people with this?"], ], inputs=[ gr.Textbox(label="Message"), gr.Textbox(label="System message", default="You are a friendly Chatbot."), gr.Textbox(label="History", default="[('USER', 'Hi there!')]"), gr.Slider(minimum=1, maximum=2048, step=1, default=512, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, step=0.1, default=0.7, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, step=0.05, default=0.95, label="Top-p (nucleus sampling)"), ], outputs=gr.Textbox(label="Response"), live=True, ) if __name__ == "__main__": demo.launch()