# -*- coding: utf-8 -*- """Fine Tuned Llama 2 for Comment Analysis Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1NX5z-wVpsEp8UigB0q7vZSZMFRa6nnEE ##**Extract Youtube Comments** """ # !pip uninstall gradio # !pip3 install gradio -q # !pip install --upgrade fastapi -q # !pip install typing-extensions --upgrade # import locale # locale.setlocale(locale.LC_ALL, 'en_US.UTF-8') # import locale # locale.getpreferredencoding = lambda: "UTF-8" # !pip3 install typing-extensions==4.2.0 # !pip3 install gradio -q # !pip3 install --upgrade tensorflow import pandas as pd import gradio as gr from googleapiclient.discovery import build import csv # import gradio as gr from PIL import Image import io api_key = 'AIzaSyANfQYiumNUfJ8_YaDg-Hfr0BRXFhXnbvQ' def video_comments(video_id): # Create a CSV file to store comments with open('comments.csv', 'w', newline='', encoding='utf-8') as csvfile: fieldnames = ['Comment'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() # Counter to limit the number of comments comment_count = 0 # creating youtube resource object youtube = build('youtube', 'v3', developerKey=api_key) # retrieve youtube video results video_response = youtube.commentThreads().list( part='snippet,replies', videoId=video_id, maxResults=100 # Adjust the number of comments per page as needed ).execute() # iterate video response while video_response: # extracting required info from each result object for item in video_response['items']: # Extracting comments comment = item['snippet']['topLevelComment']['snippet']['textDisplay'] # Write the comment to the CSV file writer.writerow({'Comment': comment}) comment_count += 1 # Check if the maximum comment count is reached if comment_count >= 50: return # Again repeat if 'nextPageToken' in video_response: video_response = youtube.commentThreads().list( part='snippet,replies', videoId=video_id, pageToken=video_response['nextPageToken'], maxResults=100 # Adjust the number of comments per page as needed ).execute() else: break def execution_function(input): # Initialize a counter for deleted rows deleted_row_count = 0 video_comments(input) # calling the comment file created above file_path = "/content/comments.csv" df = pd.read_csv(file_path) # Rename the column name to 'comments' df.rename(columns={'Comment': 'comments'}, inplace=True) # Get the first 300 comments for quick analysis df = df.head(10) return df # return_distribution() # comments_df = execution_function("6ydFDwv-n8w") # comments_df = comments_df.head(20) # comments_df.head() """##**Fine - tune Llama 2** IMP: This notebook runs on a T4 GPU. """ # !pip install -q accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 transformers==4.31.0 trl==0.4.7 import os import torch from datasets import load_dataset from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, ) from peft import LoraConfig, PeftModel from trl import SFTTrainer # The model that you want to train from the Hugging Face hub model_name = "NousResearch/Llama-2-7b-chat-hf" # The instruction dataset to use # dataset_name = "mlabonne/guanaco-llama2-1k" # Fine-tuned model name # new_model = "llama-2-7b-miniguanaco" ################################################################################ # QLoRA parameters ################################################################################ # LoRA attention dimension lora_r = 64 # Alpha parameter for LoRA scaling lora_alpha = 16 # Dropout probability for LoRA layers lora_dropout = 0.1 ################################################################################ # bitsandbytes parameters ################################################################################ # Activate 4-bit precision base model loading use_4bit = True # Compute dtype for 4-bit base models bnb_4bit_compute_dtype = "float16" # Quantization type (fp4 or nf4) bnb_4bit_quant_type = "nf4" # Activate nested quantization for 4-bit base models (double quantization) use_nested_quant = False ################################################################################ # TrainingArguments parameters ################################################################################ # Output directory where the model predictions and checkpoints will be stored output_dir = "./results" # Number of training epochs num_train_epochs = 1 # Enable fp16/bf16 training (set bf16 to True with an A100) fp16 = False bf16 = False # Batch size per GPU for training per_device_train_batch_size = 4 # Batch size per GPU for evaluation per_device_eval_batch_size = 4 # Number of update steps to accumulate the gradients for gradient_accumulation_steps = 1 # Enable gradient checkpointing gradient_checkpointing = True # Maximum gradient normal (gradient clipping) max_grad_norm = 0.3 # Initial learning rate (AdamW optimizer) learning_rate = 2e-4 # Weight decay to apply to all layers except bias/LayerNorm weights weight_decay = 0.001 # Optimizer to use optim = "paged_adamw_32bit" # Learning rate schedule lr_scheduler_type = "cosine" # Number of training steps (overrides num_train_epochs) max_steps = -1 # Ratio of steps for a linear warmup (from 0 to learning rate) warmup_ratio = 0.03 # Group sequences into batches with same length # Saves memory and speeds up training considerably group_by_length = True # Save checkpoint every X updates steps save_steps = 0 # Log every X updates steps logging_steps = 25 ################################################################################ # SFT parameters ################################################################################ # Maximum sequence length to use max_seq_length = None # Pack multiple short examples in the same input sequence to increase efficiency packing = False # Load the entire model on the GPU 0 device_map = {"": 0} # Load dataset (you can process it here) # dataset = load_dataset(dataset_name, split="train") # Load tokenizer and model with QLoRA configuration compute_dtype = getattr(torch, bnb_4bit_compute_dtype) bnb_config = BitsAndBytesConfig( load_in_4bit=use_4bit, bnb_4bit_quant_type=bnb_4bit_quant_type, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=use_nested_quant, ) # Check GPU compatibility with bfloat16 if compute_dtype == torch.float16 and use_4bit: major, _ = torch.cuda.get_device_capability() if major >= 8: print("=" * 80) print("Your GPU supports bfloat16: accelerate training with bf16=True") print("=" * 80) # Load base model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map=device_map ) model.config.use_cache = False model.config.pretraining_tp = 1 # Load LLaMA tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training # Load LoRA configuration peft_config = LoraConfig( lora_alpha=lora_alpha, lora_dropout=lora_dropout, r=lora_r, bias="none", task_type="CAUSAL_LM", ) # Set training parameters training_arguments = TrainingArguments( output_dir=output_dir, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, gradient_accumulation_steps=gradient_accumulation_steps, optim=optim, save_steps=save_steps, logging_steps=logging_steps, learning_rate=learning_rate, weight_decay=weight_decay, fp16=fp16, bf16=bf16, max_grad_norm=max_grad_norm, max_steps=max_steps, warmup_ratio=warmup_ratio, group_by_length=group_by_length, lr_scheduler_type=lr_scheduler_type, report_to="tensorboard" ) def extract_between_inst_and_newline(text): start_tag = "[/INST]" end_char = "\n" start_index = text.find(start_tag) if start_index != -1: end_index = text.find(end_char, start_index) if end_index != -1: extracted_text = text[start_index + len(start_tag):end_index] return extracted_text.strip() return None import re from functools import lru_cache @lru_cache def extract_classification_and_remark(output): classification_match = re.search(r'Classification: (.*?)\n', output) remark_match = re.search(r'Remark: (.*?)$', output) classification = classification_match.group(1) if classification_match else None remark = remark_match.group(1) if remark_match else None return classification, remark # Ignore warnings logging.set_verbosity(logging.CRITICAL) # Run text generation pipeline with our next model prompt = '''Can you classify the human input as either happy, sad, angry, surprised, confused or neutral and tell me why it was classified as such in one short sentence. Don't reply anything besides the classification and the remark. Separate the classificaion and remark with : Human input: {}''' def process_comment(comment): formatted_prompt = prompt.format(comment) pipe = pipeline(task="text2text-generation", model=model, tokenizer=tokenizer, max_length=150) result = pipe(f"[INST] {formatted_prompt} [/INST]") extract_output = result[0]['generated_text'] classification, remark = extract_classification_and_remark(extract_output) return comment, classification, remark import matplotlib.pyplot as plt import seaborn as sns def return_distribution(new_formatted_df): # Assuming your DataFrame is named 'df' sentiment_counts = new_formatted_df['classification'].value_counts() fig = plt.figure() sns.barplot(x=sentiment_counts.index, y=sentiment_counts.values) plt.xlabel('Sentiment') plt.ylabel('Count') plt.title('Sentiment Distribution') return fig from wordcloud import WordCloud def return_highest_sentiment_worldcloud(new_formatted_df, sentiment): # Create a word cloud for a specific sentiment, e.g., 'happy' happy_comments = new_formatted_df[new_formatted_df['classification'] == sentiment]['comments'] wordcloud = WordCloud(width=800, height=400, background_color='white').generate(' '.join(happy_comments)) fig = plt.figure(figsize=(10, 5)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.title('Word Cloud for the Strongest Sentiment') return fig import pandas as pd def concatenate_remarks_based_on_classification(dataset): # Create an empty dictionary to store concatenated remarks for each classification type. concatenated_remarks = {} # Iterate through the dataset to concatenate remarks. for index, row in dataset.iterrows(): classification = row['classification'] remarks = row['remark'] # Check if the classification exists in the dictionary. if classification in concatenated_remarks: if remarks is not None: concatenated_remarks[classification] += ' ' + str(remarks) else: if remarks is not None: concatenated_remarks[classification] = str(remarks) # Create a new DataFrame with the concatenated remarks. concatenated_remarks_df = pd.DataFrame(list(concatenated_remarks.items()), columns=['classification', 'concatenated_remarks']) return concatenated_remarks_df # !pip install dask -q # Run text generation pipeline with our next model prompt1 = '''Can you summarize the following text in a paragraph of no more than 100 words. Don't respond with anything besides the summary. Human input: {}''' def summarize_text(comment): formatted_prompt = prompt1.format(comment) new_pipe = pipeline(task="text2text-generation", model=model, tokenizer=tokenizer, max_length=3000) new_result = new_pipe(f"[INST] {formatted_prompt} [/INST]") return new_result ## Function for first tab import numpy as np from concurrent.futures import ThreadPoolExecutor import dask.dataframe as dd from dask.distributed import Client, LocalCluster # from multiprocessing import Pool # num_processes = 4 # Import necessary libraries and functions here # return_df = pd.DataFrame() # final_analysed_df = pd.DataFrame() # Initialize as None at the global scope # Define a Gradio interface def sentiment_distribution_interface(video_id): # global final_analysed_df # global unique_classifications return_df = pd.DataFrame() # Call the execution function with the video_id return_df = execution_function(video_id) print(return_df.head()) from concurrent.futures import ThreadPoolExecutor def process_row(row): #3.9s comment, classification, remark = process_comment(row.comments) return comment, classification, remark with ThreadPoolExecutor(max_workers=4) as executor: # Adjust the number of workers as needed results = list(executor.map(process_row, return_df.itertuples())) print(type(results)) print(results) print("__________________________________________________________________") comments, classification, remark = zip(*results) # Create a DataFrame from the separated data df = pd.DataFrame({'comments': comments, 'classification': classification, 'remark': remark}) print(df.head()) print("__________________________________________________________________") plot = return_distribution(df) # Modify this line to capture the plot word_cloud = return_highest_sentiment_worldcloud(df, df['classification'].value_counts().idxmax()) df.to_csv('processed_comments.csv', index=False) # index=False prevents writing the row numbers as a column #concatinating remarks for different sentiments # concatenated_remarks_df = concatenate_remarks_based_on_classification(df) # print(concatenated_remarks_df) # final_analysed_df = df return plot , word_cloud # Return the plot # Function for Second Tab def function_for_second_tab(input_val): final_analysed_df = pd.read_csv('processed_comments.csv') final_analysed_df = pd.DataFrame(final_analysed_df) print(final_analysed_df.head()) word_cloud = return_highest_sentiment_worldcloud(final_analysed_df, input_val) concatenated_remarks_df = concatenate_remarks_based_on_classification(final_analysed_df) comments = concatenated_remarks_df.loc[concatenated_remarks_df['classification'] == 'Happy', 'concatenated_remarks'].values[0] summarized_text = summarize_text(comments) extract_output_summary = summarized_text[0]['generated_text'] final_extract = extract_output_summary.split('[/INST]')[1].strip() return word_cloud, final_extract # # Define the first tab outputs = [gr.Plot(), gr.Plot()] iface = gr.Interface(fn=sentiment_distribution_interface, inputs="text", outputs=outputs) # # Define the second tab output_second_tab = [gr.Plot(), "text"] inputs = "text" description = ("Enter the sentiment for which you want a detailed report") app2 = gr.Interface(fn=function_for_second_tab, inputs=inputs, outputs=output_second_tab, description = description) # launch the app demo = gr.TabbedInterface([iface, app2], ["Welcome page", "Visualization page"]) if __name__ == "__main__": demo.queue().launch()