Anirudh Bhalekar commited on
Commit
1fc8c87
·
1 Parent(s): 2aa0bff

working v1

Browse files
.gradio/flagged/dataset1.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ seismic,Select Task,output,timestamp
2
+ ,Fault,,2025-08-20 13:37:37.675220
__pycache__/app.cpython-311.pyc CHANGED
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
 
__pycache__/inference.cpython-311.pyc CHANGED
Binary files a/__pycache__/inference.cpython-311.pyc and b/__pycache__/inference.cpython-311.pyc differ
 
app.py CHANGED
@@ -6,8 +6,26 @@ from PIL import Image
6
  import torch
7
  from inference import predict, random_sample
8
 
9
-
10
  def main():
11
- gr.Interface(fn=predict,
12
- inputs=gr.Image(type="pil"),
13
- outputs=gr.Image(type="pil"),).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import torch
7
  from inference import predict, random_sample
8
 
 
9
  def main():
10
+ with gr.Blocks() as demo:
11
+ # Button to select task
12
+
13
+ seismic_data = gr.State()
14
+ gr.Markdown("## SFM Inference Demo")
15
+ with gr.Row():
16
+ task = gr.Radio(choices=['Fault', 'Facies'], label="Select Task", value='Fault')
17
+ gr.Markdown("### Upload your seismic data or sample from dataset")
18
+
19
+ with gr.Row():
20
+ seismic_image = gr.Image(label="Upload Seismic Data")
21
+ prediction_image = gr.Image(label="Prediction Result")
22
+
23
+ with gr.Row():
24
+ random_sample_button = gr.Button("Upload Random Sample", elem_id="random-sample-button")
25
+ random_sample_button.click(fn=random_sample, inputs=[task], outputs=[seismic_image, seismic_data])
26
+
27
+ with gr.Row():
28
+ predict_button = gr.Button("Run Inference", elem_id="predict-button")
29
+ predict_button.click(fn=predict, inputs=[seismic_data, task], outputs=[prediction_image])
30
+
31
+ demo.launch()
inference.py CHANGED
@@ -4,9 +4,20 @@ import timm
4
  from util.datasets import ThebeSet, P3DFaciesSet
5
  from util.pos_embed import interpolate_pos_embed
6
  import random
 
 
 
 
 
7
 
8
 
9
- def predict(seis: torch.Tensor, finetune: str, task='Fault', model_type='vit_large_patch16', device = 'cpu', thresh = 0.5):
 
 
 
 
 
 
10
  if task == 'Fault':
11
  model = models_Fault.__dict__[model_type](
12
  img_size=768,
@@ -14,19 +25,21 @@ def predict(seis: torch.Tensor, finetune: str, task='Fault', model_type='vit_lar
14
  drop_path_rate=0.1,
15
  in_chans=1,
16
  )
 
17
  elif task == 'Facies':
18
  model = models_Facies.__dict__[model_type](
19
- img_size=768,
20
  num_classes=6,
21
  drop_path_rate=0.1,
22
  in_chans=1,
23
  )
 
24
  else:
25
  raise ValueError(f"Task not configured yet: {task}")
26
 
27
  model.to(device)
28
- checkpoint = torch.load(finetune, map_location=device, weights_only=True)
29
- print("Load pre-trained checkpoint from: %s" % finetune)
30
  checkpoint_model = checkpoint['model']
31
  state_dict = model.state_dict()
32
 
@@ -40,10 +53,10 @@ def predict(seis: torch.Tensor, finetune: str, task='Fault', model_type='vit_lar
40
  print(msg)
41
 
42
 
43
- print("Seismic data shape:", seis.shape)
44
 
45
  with torch.no_grad():
46
- output = model(seis.unsqueeze(0))
47
  output = output.squeeze(0)
48
 
49
  if task in ['Fault']:
@@ -55,19 +68,27 @@ def predict(seis: torch.Tensor, finetune: str, task='Fault', model_type='vit_lar
55
  output = output.detach().cpu().numpy()
56
 
57
  print("Model output shape:", output.shape)
58
-
 
 
59
  return output
60
 
61
 
62
- def random_sample(data_path: str, task = 'Fault', batch_size=1, num_workers=0):
63
  if task == 'Fault':
 
64
  dataset = ThebeSet(data_path, [768, 768], 'test')
65
  elif task == 'Facies':
 
66
  dataset = P3DFaciesSet(data_path, mode = 'train')
67
  else:
68
  raise ValueError(f"Task not configured yet: {task}")
69
 
70
  index = random.randint(0, len(dataset) - 1)
71
  seis, label = dataset[index]
 
 
 
 
72
 
73
- return seis, label
 
4
  from util.datasets import ThebeSet, P3DFaciesSet
5
  from util.pos_embed import interpolate_pos_embed
6
  import random
7
+ import huggingface_hub
8
+ from huggingface_hub import hf_hub_download
9
+ from PIL import Image
10
+ import numpy as np
11
+ from matplotlib import cm
12
 
13
 
14
+ HFACE_FAULTS = "checkpoint-24.pth"
15
+ HFACE_FACIES = "checkpoint-49.pth"
16
+
17
+ FAULT_DATA_PATH = "C:\\Users\\abhalekar\\Desktop\\DATASETS\\Thebe_DATASET\\crossline_combined_data"
18
+ FACIES_DATA_PATH = "C:\\Users\\abhalekar\\Desktop\\DATASETS\\P3D_Vol_DATASET"
19
+
20
+ def predict(seismic: torch.Tensor, task='Fault', model_type='vit_large_patch16', device = 'cpu', hface = True, thresh = 0.5):
21
  if task == 'Fault':
22
  model = models_Fault.__dict__[model_type](
23
  img_size=768,
 
25
  drop_path_rate=0.1,
26
  in_chans=1,
27
  )
28
+ checkpoint_path = hf_hub_download(repo_id="Ani24/SFM_Finetuned", filename=HFACE_FAULTS, subfolder="ckpts-Tversky-Neut")
29
  elif task == 'Facies':
30
  model = models_Facies.__dict__[model_type](
31
+ img_size=128,
32
  num_classes=6,
33
  drop_path_rate=0.1,
34
  in_chans=1,
35
  )
36
+ checkpoint_path = hf_hub_download(repo_id="Ani24/SFM_Finetuned", filename=HFACE_FACIES, subfolder="ckpts-RSVSFacies-P3D")
37
  else:
38
  raise ValueError(f"Task not configured yet: {task}")
39
 
40
  model.to(device)
41
+ checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
42
+
43
  checkpoint_model = checkpoint['model']
44
  state_dict = model.state_dict()
45
 
 
53
  print(msg)
54
 
55
 
56
+ print("Seismic data shape:", seismic.shape)
57
 
58
  with torch.no_grad():
59
+ output = model(seismic.unsqueeze(0))
60
  output = output.squeeze(0)
61
 
62
  if task in ['Fault']:
 
68
  output = output.detach().cpu().numpy()
69
 
70
  print("Model output shape:", output.shape)
71
+ output = output/ output.max() # Normalize output to [0, 1] range
72
+ # output is numpy 2d array - convert to pil RGB image
73
+ output = Image.fromarray((output * 255).astype(np.uint8)).convert("RGB")
74
  return output
75
 
76
 
77
+ def random_sample(task = 'Fault', data_path = None, batch_size=1, num_workers=0):
78
  if task == 'Fault':
79
+ data_path = FAULT_DATA_PATH
80
  dataset = ThebeSet(data_path, [768, 768], 'test')
81
  elif task == 'Facies':
82
+ data_path = FACIES_DATA_PATH
83
  dataset = P3DFaciesSet(data_path, mode = 'train')
84
  else:
85
  raise ValueError(f"Task not configured yet: {task}")
86
 
87
  index = random.randint(0, len(dataset) - 1)
88
  seis, label = dataset[index]
89
+
90
+ seis_image = seis.detach().cpu().numpy().squeeze(0)
91
+ seis_image = (seis_image - seis_image.min()) / (seis_image.max() - seis_image.min()) # Normalize to [0, 1] range
92
+ seis_image = Image.fromarray(np.uint8(cm.seismic(seis_image) * 255)) # Convert to PIL Image
93
 
94
+ return seis_image, seis
requirements.txt CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
 
test.ipynb CHANGED
@@ -2,13 +2,52 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": null,
6
  "id": "aaadf81b",
7
  "metadata": {},
8
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  "source": [
10
- "import app\n"
 
 
11
  ]
 
 
 
 
 
 
 
 
12
  }
13
  ],
14
  "metadata": {
@@ -18,7 +57,15 @@
18
  "name": "python3"
19
  },
20
  "language_info": {
 
 
 
 
 
 
21
  "name": "python",
 
 
22
  "version": "3.11.9"
23
  }
24
  },
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 1,
6
  "id": "aaadf81b",
7
  "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stderr",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "C:\\Users\\abhalekar\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python311\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
14
+ " from .autonotebook import tqdm as notebook_tqdm\n"
15
+ ]
16
+ },
17
+ {
18
+ "name": "stdout",
19
+ "output_type": "stream",
20
+ "text": [
21
+ "* Running on local URL: http://127.0.0.1:7860\n",
22
+ "* To create a public link, set `share=True` in `launch()`.\n"
23
+ ]
24
+ },
25
+ {
26
+ "data": {
27
+ "text/html": [
28
+ "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
29
+ ],
30
+ "text/plain": [
31
+ "<IPython.core.display.HTML object>"
32
+ ]
33
+ },
34
+ "metadata": {},
35
+ "output_type": "display_data"
36
+ }
37
+ ],
38
  "source": [
39
+ "import app\n",
40
+ "\n",
41
+ "app.main()"
42
  ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "id": "5f4991c2",
48
+ "metadata": {},
49
+ "outputs": [],
50
+ "source": []
51
  }
52
  ],
53
  "metadata": {
 
57
  "name": "python3"
58
  },
59
  "language_info": {
60
+ "codemirror_mode": {
61
+ "name": "ipython",
62
+ "version": 3
63
+ },
64
+ "file_extension": ".py",
65
+ "mimetype": "text/x-python",
66
  "name": "python",
67
+ "nbconvert_exporter": "python",
68
+ "pygments_lexer": "ipython3",
69
  "version": "3.11.9"
70
  }
71
  },