# Train shape recognition from numpy import loadtxt import os import pandas as pd from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.svm import NuSVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis import neptune import zipfile from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.ensemble import StackingClassifier from sklearn.linear_model import LogisticRegression import os from keras.models import Sequential from keras.layers import Dense from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from keras.wrappers.scikit_learn import KerasClassifier import argparse from datetime import datetime from xgboost import XGBClassifier from xgboost import XGBRFClassifier import matplotlib.pyplot as plt from PIL import Image from yellowbrick.classifier import ConfusionMatrix from sklearn.metrics import confusion_matrix import seaborn as sn import shutil from joblib import dump, load from common import log_verbose import common from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from numpy import mean from numpy import std #start time measurement start_time = datetime.now() #parse input predefined_switches = [ ('--default', '-d', 'default_classifier', 'Run RandomForest and XGBClassifier'), ('--limited', '-l', 'limited_classifier', 'Run RandomForest, XGBClassifier, KNeighbors, NeuralNet '), ('--full', '-f', 'all_classifier', 'Run all classifiers (painfully slow and rather pointless)')] algorithm_switches = [ ('--rfc', 'rfc_classifier', 'Run RandomForestClassifier'), ('--xgb', 'xgb_classifier', 'Run XGBClassifier'), ('--xrfc', 'xrfc_classifier', 'Run XGBRFClassifier'), ('--mlp', 'mlp_classifier', 'Run MLPClassifier'), ('--dct', 'dct_classifier', 'Run DecisionTreeClassifier'), ('--ada', 'ada_classifier', 'Run AdaBoostClassifier'), ('--gnb', 'gnb_classifier', 'Run GaussianNB'), ('--qda', 'qda_classifier', 'Run QuadraticDiscriminantAnalysis'), ('--svc', 'svc_classifier', 'Run SVC'), ('--lr', 'lr_classifier', 'Run LogisticRegression'), ('--knc', 'knc_classifier', 'Run KNeighborsClassifier'), ('--nn', 'nn_classifier', 'Run NeuralNet (do not run stacked)') ] parser = argparse.ArgumentParser(description='Demo for various training shape recognition methods') parser.add_argument('--gpu', action='store_true', default=False, dest='gpu', help='Use GPU acceleration') parser.add_argument('--pca', '-p', action='store', dest='pca', help='Perform PCA on input data. Values below 1 for explained variability, from 1 number of PCA components') parser.add_argument('--kfold', '-k', action='store', dest='kfold', help='Perform kfold cross validation. Specify number of folds') parser.add_argument('--extended', action='store_true', default=False, dest='extended', help='Produces predictions for the complete data set') parser.add_argument('--verbose', '-v', action='store_true', default=False, dest='verbose', help='Set verbose mode') parser.add_argument('--upload', '-u', action='store_true', default=False, dest='upload', help='Upload results to Neptune, NEPTUNE_API_TOKEN must be set in the shell') parser.add_argument('--from', action='store', dest='start', default=0, help='specify subset of features to be used for training, start point <0,499>') parser.add_argument('--to', action='store', dest='end', default=499, help='specify subset of features to be used for training, end point <0,499>') parser.add_argument('--tag', action='store', dest='tag', help='Identifier for trained model. If not specified the default will be replaced') group = parser.add_mutually_exclusive_group() for item in predefined_switches: group.add_argument(item[0], item[1], action='store_true', dest=item[2], help=item[3]) for item in algorithm_switches: parser.add_argument(item[0], action='store_true', dest=item[1], help=item[2]) #add option to run stacked parser.add_argument('--stacked', '-s', action='store_true', default=False, dest='stc_classifier', help='Additionally run selected classifiers stacked') results = parser.parse_args() # pass relevant settings to the common lib common.verbose = results.verbose if results.tag: common.tag = results.tag # Just disables the warning, doesn't enable AVX/FMA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #prepare output directory output_dir = common.model_directory() log_verbose('\nResults will be placed in: ', output_dir) if os.path.isdir(output_dir): log_verbose('\nCleaning output directory') shutil.rmtree(output_dir) if not os.path.isdir(common.model_dir): os.mkdir(common.model_dir) os.mkdir(output_dir) # concat contents off all data files log_verbose('\nPreparing data') content = [] for txt_file in common.get_data_files(): filename = os.path.basename(txt_file) log_verbose(' Retrieving data from: ' + filename) # read in data shape = common.preprocess_input_file(txt_file) #add 'shape' column with shape name shape['shape'] = filename[:-len(common.data_suffix)] content.append(shape) all_df = pd.concat(content, axis=0, ignore_index=True) #create a dataframe with all training data except the target columns all_X = all_df.drop(columns=['id', 'shape']) #remove subset if required log_verbose(' Using features from position: ' + str(results.start) + ' to position ' + str(results.end)) all_X.drop(all_X.iloc[:, int(results.end)+1:], inplace = True, axis = 1) all_X.drop(all_X.iloc[:, 0:int(results.start)], inplace = True, axis = 1) #create a dataframe with only the target column all_y = all_df[['shape']] #create target in one-hot encoding # define the keras model # encode class values as integers encoder = LabelEncoder() encoder.fit(all_y.values.ravel()) # get ordinal encoding ordinal_y = encoder.transform(all_y.values.ravel()) # get one hot encoding one_hot_y = np_utils.to_categorical(ordinal_y) #save classes to the file common.save_encoder(encoder) #split into test and train X_train, X_test_base, y_train, y_test, one_hot_y_train, one_hot_y_test, ordinal_y_train, ordinal_y_test = train_test_split(all_X, all_y, one_hot_y, ordinal_y, test_size=0.2) # 80% training and 20% test #normalize input scaler = StandardScaler() scaler.fit(X_train) # Apply transform to both the training set and the test set. X_train = scaler.transform(X_train) X_test = scaler.transform(X_test_base) all_X = scaler.transform(all_X) #save the scaler common.save_scaler(scaler) # Check if PCA should be done if results.pca: pca_parameter = float(results.pca); if pca_parameter >= 1: pca_parameter = int(pca_parameter); pca = PCA(pca_parameter) pca.fit(X_train) common.save_pca(pca) log_verbose("\nPCA reduction:") log_verbose(" Number of selected components: ", pca.n_components_) log_verbose(" Explained variance: {0:.0%}".format(pca.explained_variance_ratio_.sum())) # apply the PCA transform X_train = pca.transform(X_train) X_test = pca.transform(X_test) all_X = pca.transform(all_X) # Random forest parameters = {'n_estimators': 220, 'random_state': 0} # define the keras model for Neural Network #get number of columns and categories in training data train_cols = X_train.shape[1] no_categories = one_hot_y.shape[1] def baseline_model(train_cols, no_categories): def bm(): # create model model = Sequential() model.add(Dense(12, input_dim=train_cols, activation='relu')) model.add(Dense(200, activation='relu')) model.add(Dense(no_categories, activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics = ['accuracy']) return model return bm def baseline_model2(train_cols, no_categories): def bm(): # create model model = Sequential([ Dense(units=256, input_dim=train_cols, activation='relu'), Dense(units=192, activation='relu'), Dense(units=128, activation='relu'), Dense(units=no_categories, activation='softmax') ]) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics = ['accuracy']) return model return bm log_verbose('\nPreparing classifiers') classifiers = [] ##default classifiers if results.all_classifier or results.limited_classifier or results.default_classifier or results.rfc_classifier: classifiers.append(('RandomForestClassifier', RandomForestClassifier(**parameters))) if results.all_classifier or results.limited_classifier or results.default_classifier or results.xgb_classifier: if results.gpu: classifiers.append(('XGBClassifier', XGBClassifier(use_label_encoder=False, eval_metric = "merror", tree_method='gpu_hist', gpu_id=0))) else: classifiers.append(('XGBClassifier', XGBClassifier(use_label_encoder=False, eval_metric="merror"))) #limited classifiers if results.all_classifier or results.limited_classifier or results.knc_classifier: classifiers.append(('KNeighborsClassifier', KNeighborsClassifier(3))) if results.all_classifier or results.limited_classifier or results.nn_classifier: # compile the keras classifier. Arbitrarily select smaller classifier if data reduction (PCA) applied if results.pca: keras_estimator = KerasClassifier(build_fn=baseline_model(train_cols, no_categories), epochs=500, batch_size=5, verbose=0) else: keras_estimator = KerasClassifier(build_fn=baseline_model2(train_cols, no_categories), epochs=500, batch_size=5, verbose=0) classifiers.append(('NeuralNet', keras_estimator)) #full classifiers if results.all_classifier or results.xrfc_classifier: if results.gpu: classifiers.append(('XGBRFClassifier', XGBRFClassifier(use_label_encoder=False, eval_metric = "merror", n_estimators=220, tree_method='gpu_hist', gpu_id=0))) else: classifiers.append(('XGBRFClassifier', XGBRFClassifier(use_label_encoder=False, eval_metric="merror", n_estimators=220))) if results.all_classifier or results.mlp_classifier: classifiers.append(('MLPClassifier', MLPClassifier(alpha=1, max_iter=5000))) if results.all_classifier or results.dct_classifier: classifiers.append(('DecisionTreeClassifier', DecisionTreeClassifier(max_depth=7))) if results.all_classifier or results.ada_classifier: classifiers.append(('AdaBoostClassifier', AdaBoostClassifier())) if results.all_classifier or results.gnb_classifier: classifiers.append(('GaussianNB', GaussianNB())) if results.all_classifier or results.qda_classifier: classifiers.append(('QuadraticDiscriminantAnalysis', QuadraticDiscriminantAnalysis())) if results.all_classifier or results.svc_classifier: classifiers.append(('SVC', SVC(gamma='auto'))) if results.all_classifier or results.lr_classifier: classifiers.append(('LogisticRegression', LogisticRegression(max_iter = 5000))) if results.stc_classifier: classifiers.append(('Stacked', StackingClassifier(estimators=classifiers[:-1], final_estimator=LogisticRegression(max_iter=5000)))) for name, clf in classifiers: log_verbose(' Added classifier: ', name) #list of classifiers where one hot encoding is required one_hot_encoded = ['NeuralNet'] accuracy = {} kfold_accuracy = {} kfold_std = {} class_probability_names = [] for class_name in encoder.classes_: class_probability_names.append(class_name + '_prob') for name, clf in classifiers: if name in {'Stacked'}: log_verbose("\nEvaluating: ", name) else: continue train_start_time = datetime.now() fig, ax = plt.subplots() if name in one_hot_encoded: clf.fit(X_train, one_hot_y_train) y_pred = encoder.inverse_transform(clf.predict(X_test)) accuracy[name] = metrics.accuracy_score(y_test, y_pred) c_m = confusion_matrix(y_test, y_pred, labels = encoder.classes_ ) df_cfm = pd.DataFrame(c_m, index=encoder.classes_ , columns=encoder.classes_ ) plt.figure(figsize=(10, 7)) cfm_plot = sn.heatmap(df_cfm, annot=True, fmt='d') plt.savefig(common.model_file(name + ".png")) plt.close(fig) #clf.save(output_file(name + ".joblib")) does not work not NN else: #perform k-fold if requested, number of splits provided as input if results.kfold: log_verbose(' Performing ' + results.kfold + '-fold cross validation for: ' + name ) folds=int(results.kfold) # prepare the cross-validation procedure cv = KFold(n_splits=folds, random_state=1, shuffle=True) # evaluate model scores = cross_val_score(clf, all_X, ordinal_y, scoring='accuracy', cv=cv, n_jobs=-1) # report performance print(scores) kfold_accuracy[name] = mean(scores) kfold_std[name] = std(scores) print('Accuracy: %.3f (%.3f)' % (mean(scores), std(scores))) cm = ConfusionMatrix(clf, label_encoder=encoder, classes=encoder.classes_)#, is_fitted=False, ax=ax) cm.fit(X_train, ordinal_y_train) accuracy[name] = cm.score(X_test, ordinal_y_test) cm.finalize() plt.tight_layout() plt.savefig(common.model_file(name + ".png")) plt.close(fig) dump(clf, common.model_file(name + ".joblib")) train_end_time = datetime.now() if results.extended: all_df = common.append_predictions(clf, all_X, name, all_df) print('', name, "accuracy:", "{0:.0%}".format(accuracy[name])) eval_end_time = datetime.now() log_verbose(' Training time: {}'.format(train_end_time - train_start_time)) log_verbose(' Evaluation time: {}\n'.format(eval_end_time - train_end_time)) # save the results file if required if results.extended: for i in X_test_base.index: all_df.loc[i, 'test_set'] = "yes" #save the results file log_verbose('Saving predictions') all_df.to_csv(common.model_file("predictions.csv")) end_time = datetime.now() log_verbose('Total execution time: {}'.format(end_time - start_time)) if results.upload: if os.getenv('CI') == "true": log_verbose('Uploading results from CI') neptune.init(api_token=os.getenv('NEPTUNE_API_TOKEN'), project_qualified_name=os.getenv('NEPTUNE_PROJECT_NAME')) else: token = os.getenv('NEPTUNE_API_TOKEN') if token: log_verbose('Uploading results') neptune.init(project_qualified_name=os.getenv('NEPTUNE_PROJECT_NAME'), api_token=os.getenv('NEPTUNE_API_TOKEN')) else: print('NEPTUNE_API_TOKEN and NEPTUNE_PROJECT_NAME must be specified in the shell') exit(1) def zip_it(in_file, out_file): inpath = common.model_file(in_file) outpath = common.model_file(out_file) with zipfile.ZipFile(outpath, "w", compression=zipfile.ZIP_DEFLATED) as zf: zf.write(inpath, os.path.basename(inpath)) #unix style required by naptune return outpath.as_posix() neptune.create_experiment(name='shape_prediction') for name, clf in classifiers: log_verbose('Uploading data for: ', name) neptune.log_metric(name, accuracy[name]) if results.kfold: neptune.log_metric('kfold_accuracy_'+name, kfold_accuracy[name]) neptune.log_metric('kfold_stddev_'+name, kfold_std[name]) # Load image image = Image.open(common.model_file(name+".png")) neptune.log_image('Confusion matrices', image, image_name=name, description='Confusion matrix for '+name) #can't save NN at the moment if name not in one_hot_encoded: neptune.log_artifact(zip_it(name + ".joblib", name + ".zip")) neptune.log_artifact(common.model_file(common.scaler_file).as_posix()) neptune.log_artifact(common.model_file(common.class_name_file).as_posix()) if results.pca: neptune.log_artifact(common.model_file(common.pca_file).as_posix()) # if requested zip and add extended results if results.extended: log_verbose("Zipping and uploading complete prediction result file") neptune.log_artifact(zip_it("predictions.csv", "predictions.zip")) neptune.stop()