from sklearn.preprocessing import OrdinalEncoder import xgboost as xgb import numpy as np import matplotlib.pyplot as plt import argparse, h5py, os, re, pkg_resources import streamlit as st st.title('POMFinder') st.write('Welcome to DeepStruc that is a Deep Generative Model which has been trained to solve a mono-metallic structure (<200 atoms) based on a PDF!') st.write('Upload a PDF to use DeepStruc to predict the structure.') # Define the file upload widget pdf_file = st.file_uploader("Upload PDF file in .gr format", type=["gr"]) # Define the form to get the other parameters num_structures = st.number_input("Qmin value", min_value=0, max_value=2, value=0.7) #structure_index = st.number_input("Index of structure to visualize", min_value=0, value=3) #sigma = st.number_input("Standard deviation for sampling", min_value=0.1, value=3.0) parser = argparse.ArgumentParser(prog='POMFinder', formatter_class=argparse.ArgumentDefaultsHelpFormatter) requiredNamed = parser.add_argument_group('required named arguments') requiredNamed.add_argument("-d", "--data", default=None, type=str, help="a directory of PDFs or a file.", required=True) requiredNamed.add_argument("-n", "--nyquist", default="No", type=str, help="is the data nyquist sampled", required=True) parser.add_argument("-i", "--Qmin", default=0.7, type=float, help="Qmin value of the experimental PDF") parser.add_argument("-a", "--Qmax", default=30, type=float, help="Qmax value of the experimental PDF") parser.add_argument("-f", "--file_name", default='', type=str, help="Name of the output file") parser.add_argument("-m", "--Qdamp", default=0.04, type=float, help="Qdamp value of the experimental PDF") def main(args=None): args = parser.parse_args(args=args) y, y_onehotenc_cat, y_onehotenc_values, POMFinder = get_POMFinder() r, Gr = PDF_Preparation(args.data, args.Qmin, args.Qmax, args.Qdamp, rmax=10, nyquist=args.nyquist) res, y_pred_proba = POMPredicter(POMFinder, Gr, y_onehotenc_cat); def get_POMFinder(): # Get file paths load_files = pkg_resources.resource_listdir(__name__, 'Backend/') DataBase_path = pkg_resources.resource_filename(__name__, "Backend/"+load_files[0]) POMFinder_path = pkg_resources.resource_filename(__name__, "Backend/"+load_files[1]) # Import the Database hf_name = h5py.File(DataBase_path, "r") y = hf_name.get('y') enc = OrdinalEncoder() y_onehotenc_cat = enc.fit(np.array(y)) y_onehotenc_values = enc.fit_transform(np.array(y)) # Import POMFinder POMFinder = xgb.XGBClassifier() POMFinder.load_model(POMFinder_path) return y, y_onehotenc_cat, y_onehotenc_values, POMFinder def PDF_Preparation(Your_PDF_Name, Qmin, Qmax, Qdamp, rmax, nyquist, plot=True): for i in range(1000): with open(Your_PDF_Name, "r") as file: data = file.read().splitlines(True) if len(data[0]) == 0: with open(Your_PDF_Name, 'w') as fout: fout.writelines(data[1:]) break first_line = data[0] if len(first_line) > 3 and re.match(r'^-?\d+(?:\.\d+)?$', first_line[0]) != None and re.match(r'^-?\d+(?:\.\d+)?$', first_line[1]) == None and re.match(r'^-?\d+(?:\.\d+)?$', first_line[2]) != None: PDF = np.loadtxt(Your_PDF_Name) break else: with open(Your_PDF_Name, 'w') as fout: fout.writelines(data[1:]) r, Gr = PDF[:,0], PDF[:,1] if r[0] != 0: # In the case that the Data not start at 0. Gr = Gr[np.where(r==1)[0][0]:] # Remove Data from 0 to 0.5 AA Gr = Gr[::10] # Nyquist sample the rest of the Data Gr = np.concatenate(([0,0,0,0,0,0,0,0,0,0], Gr), axis=0) # Concatenate 0 - 0.5 AA on the Gr. if nyquist == "No" or nyquist == "no": Gr = Gr[::10] # Nyquist sample Data if len(Gr) >= (rmax*10+1): Gr = Gr[:(rmax*10+1)] # In the case Data is up to more than 30 AA, we do not use it. else: Gr = np.concatenate((Gr, np.zeros((101-len(Gr),))), axis=0) # In case Data is not going to 30 AA, we add 0's. Gr[:10] = np.zeros((10,)) r = np.arange(0, (rmax+0.1), 0.1) # Normalise it to the data from the database Gr /= np.max(Gr) # Add experimental parameters to the Gr Gr = np.expand_dims(np.concatenate((np.expand_dims(Qmin, axis=0), np.expand_dims(Qmax, axis=0), np.expand_dims(Qdamp, axis=0), Gr), axis=0), axis=0) if plot: # Plot the transformation to make sure everything is alright plt.plot(PDF[:,0], PDF[:,1], label="Original Data") plt.plot(r, Gr[0,3:], label="Gr ready for ML") plt.legend() plt.title("Original Data vs. normalised Data") plt.xlabel("r (AA)") plt.ylabel("Gr") plt.show() return r, Gr def POMPredicter(POMFinder, Gr, y_onehotenc_cat): y_pred_proba = POMFinder.predict_proba(Gr); y_pred_proba = y_pred_proba[:,1]; #print (np.shape(y_pred_proba)) #y_pred_proba = y_pred_proba[0]; res = sorted(range(len(y_pred_proba)), key = lambda sub: y_pred_proba[sub]); res.reverse(); print ("The 1st guess from the model is: ", str(y_onehotenc_cat.categories_[0][res[0]])[2:-2]+"cale.xyz") print ("The 2nd guess from the model is: ", str(y_onehotenc_cat.categories_[0][res[1]])[2:-2]+"cale.xyz") print ("The 3rd guess from the model is: ", str(y_onehotenc_cat.categories_[0][res[2]])[2:-2]+"cale.xyz") print ("The 4th guess from the model is: ", str(y_onehotenc_cat.categories_[0][res[3]])[2:-2]+"cale.xyz") print ("The 5th guess from the model is: ", str(y_onehotenc_cat.categories_[0][res[4]])[2:-2]+"cale.xyz") return res, y_pred_proba