# All rights reserved. from collections import OrderedDict import torch import torch.nn as nn from functools import partial import torch.nn.functional as F import math from timm.models.vision_transformer import _cfg from timm.models.registry import register_model from timm.models.layers import trunc_normal_, DropPath, to_2tuple layer_scale = False init_value = 1e-6 global_attn = None token_indices = None # code is from https://github.com/YifanXu74/Evo-ViT def easy_gather(x, indices): # x => B x N x C # indices => B x N B, N, C = x.shape N_new = indices.shape[1] offset = torch.arange(B, dtype=torch.long, device=x.device).view(B, 1) * N indices = indices + offset # only select the informative tokens out = x.reshape(B * N, C)[indices.view(-1)].reshape(B, N_new, C) return out # code is from https://github.com/YifanXu74/Evo-ViT def merge_tokens(x_drop, score): # x_drop => B x N_drop # score => B x N_drop weight = score / torch.sum(score, dim=1, keepdim=True) x_drop = weight.unsqueeze(-1) * x_drop return torch.sum(x_drop, dim=1, keepdim=True) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., trade_off=1): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) # updating weight for global score self.trade_off = trade_off def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) # update global score global global_attn tradeoff = self.trade_off if isinstance(global_attn, int): global_attn = torch.mean(attn[:, :, 0, 1:], dim=1) elif global_attn.shape[1] == N - 1: # no additional token and no pruning, update all global scores cls_attn = torch.mean(attn[:, :, 0, 1:], dim=1) global_attn = (1 - tradeoff) * global_attn + tradeoff * cls_attn else: # only update the informative tokens # the first one is class token # the last one is rrepresentative token cls_attn = torch.mean(attn[:, :, 0, 1:-1], dim=1) if self.training: temp_attn = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn global_attn = torch.cat((temp_attn, global_attn[:, (N - 2):]), dim=1) else: # no use torch.cat() for fast inference global_attn[:, :(N - 2)] = (1 - tradeoff) * global_attn[:, :(N - 2)] + tradeoff * cls_attn attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class CBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = nn.BatchNorm2d(dim) self.conv1 = nn.Conv2d(dim, dim, 1) self.conv2 = nn.Conv2d(dim, dim, 1) self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.BatchNorm2d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) global layer_scale self.ls = layer_scale if self.ls: global init_value print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") self.gamma_1 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True) self.gamma_2 = nn.Parameter(init_value * torch.ones((1, dim, 1, 1)),requires_grad=True) def forward(self, x): x = x + self.pos_embed(x) if self.ls: x = x + self.drop_path(self.gamma_1 * self.conv2(self.attn(self.conv1(self.norm1(x))))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class EvoSABlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, prune_ratio=1, trade_off=0, downsample=False): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, trade_off=trade_off) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.prune_ratio = prune_ratio self.downsample = downsample if downsample: self.avgpool = nn.AvgPool2d(kernel_size=2, stride=2) global layer_scale self.ls = layer_scale if self.ls: global init_value print(f"Use layer_scale: {layer_scale}, init_values: {init_value}") self.gamma_1 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) if self.prune_ratio != 1: self.gamma_3 = nn.Parameter(init_value * torch.ones((dim)),requires_grad=True) def forward(self, cls_token, x): x = x + self.pos_embed(x) B, C, H, W = x.shape x = x.flatten(2).transpose(1, 2) if self.prune_ratio == 1: x = torch.cat([cls_token, x], dim=1) if self.ls: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) else: x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) cls_token, x = x[:, :1], x[:, 1:] x = x.transpose(1, 2).reshape(B, C, H, W) return cls_token, x else: global global_attn, token_indices # calculate the number of informative tokens N = x.shape[1] N_ = int(N * self.prune_ratio) # sort global attention indices = torch.argsort(global_attn, dim=1, descending=True) # concatenate x, global attention and token indices => x_ga_ti # rearrange the tensor according to new indices x_ga_ti = torch.cat((x, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1) x_ga_ti = easy_gather(x_ga_ti, indices) x_sorted, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1] # informative tokens x_info = x_sorted[:, :N_] # merge dropped tokens x_drop = x_sorted[:, N_:] score = global_attn[:, N_:] # B x N_drop x C => B x 1 x C rep_token = merge_tokens(x_drop, score) # concatenate new tokens x = torch.cat((cls_token, x_info, rep_token), dim=1) if self.ls: # slow update fast_update = 0 tmp_x = self.attn(self.norm1(x)) fast_update = fast_update + tmp_x[:, -1:] x = x + self.drop_path(self.gamma_1 * tmp_x) tmp_x = self.mlp(self.norm2(x)) fast_update = fast_update + tmp_x[:, -1:] x = x + self.drop_path(self.gamma_2 * tmp_x) # fast update x_drop = x_drop + self.gamma_3 * fast_update.expand(-1, N - N_, -1) else: # slow update fast_update = 0 tmp_x = self.attn(self.norm1(x)) fast_update = fast_update + tmp_x[:, -1:] x = x + self.drop_path(tmp_x) tmp_x = self.mlp(self.norm2(x)) fast_update = fast_update + tmp_x[:, -1:] x = x + self.drop_path(tmp_x) # fast update x_drop = x_drop + fast_update.expand(-1, N - N_, -1) cls_token, x = x[:, :1, :], x[:, 1:-1, :] if self.training: x_sorted = torch.cat((x, x_drop), dim=1) else: x_sorted[:, N_:] = x_drop x_sorted[:, :N_] = x # recover token # scale for normalization old_global_scale = torch.sum(global_attn, dim=1, keepdim=True) # recover order indices = torch.argsort(token_indices, dim=1) x_ga_ti = torch.cat((x_sorted, global_attn.unsqueeze(-1), token_indices.unsqueeze(-1)), dim=-1) x_ga_ti = easy_gather(x_ga_ti, indices) x_patch, global_attn, token_indices = x_ga_ti[:, :, :-2], x_ga_ti[:, :, -2], x_ga_ti[:, :, -1] x_patch = x_patch.transpose(1, 2).reshape(B, C, H, W) if self.downsample: # downsample global attention global_attn = global_attn.reshape(B, 1, H, W) global_attn = self.avgpool(global_attn).view(B, -1) # normalize global attention new_global_scale = torch.sum(global_attn, dim=1, keepdim=True) scale = old_global_scale / new_global_scale global_attn = global_attn * scale return cls_token, x_patch class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, patch_size=16, in_chans=3, embed_dim=768): super().__init__() self.norm = nn.LayerNorm(embed_dim) self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = self.proj(x) B, C, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() return x class head_embedding(nn.Module): def __init__(self, in_channels, out_channels): super(head_embedding, self).__init__() self.proj = nn.Sequential( nn.Conv2d(in_channels, out_channels // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), nn.BatchNorm2d(out_channels // 2), nn.GELU(), nn.Conv2d(out_channels // 2, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), nn.BatchNorm2d(out_channels), ) def forward(self, x): x = self.proj(x) return x class middle_embedding(nn.Module): def __init__(self, in_channels, out_channels): super(middle_embedding, self).__init__() self.proj = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)), nn.BatchNorm2d(out_channels), ) def forward(self, x): x = self.proj(x) return x class UniFormer_Light(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, depth=[3, 4, 8, 3], in_chans=3, num_classes=1000, embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=[4., 4., 4., 4.], qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, conv_stem=False, prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer head_dim (int): head dimension mlp_ratio (list): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) if conv_stem: self.patch_embed1 = head_embedding(in_channels=in_chans, out_channels=embed_dim[0]) self.patch_embed2 = PatchEmbed( patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) self.patch_embed3 = PatchEmbed( patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) self.patch_embed4 = PatchEmbed( patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) else: self.patch_embed1 = PatchEmbed( patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) self.patch_embed2 = PatchEmbed( patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) self.patch_embed3 = PatchEmbed( patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) self.patch_embed4 = PatchEmbed( patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) # class token self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim[2])) self.cls_upsample = nn.Linear(embed_dim[2], embed_dim[3]) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule num_heads = [dim // head_dim for dim in embed_dim] self.blocks1 = nn.ModuleList([ CBlock( dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth[0])]) self.blocks2 = nn.ModuleList([ CBlock( dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer) for i in range(depth[1])]) self.blocks3 = nn.ModuleList([ EvoSABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer, prune_ratio=prune_ratio[2][i], trade_off=trade_off[2][i], downsample=True if i == depth[2] - 1 else False) for i in range(depth[2])]) self.blocks4 = nn.ModuleList([ EvoSABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer, prune_ratio=prune_ratio[3][i], trade_off=trade_off[3][i]) for i in range(depth[3])]) self.norm = nn.BatchNorm2d(embed_dim[-1]) self.norm_cls = nn.LayerNorm(embed_dim[-1]) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() # Classifier head self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() self.head_cls = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = x.shape[0] x = self.patch_embed1(x) x = self.pos_drop(x) for blk in self.blocks1: x = blk(x) x = self.patch_embed2(x) for blk in self.blocks2: x = blk(x) x = self.patch_embed3(x) # add cls_token in stage3 cls_token = self.cls_token.expand(x.shape[0], -1, -1) global global_attn, token_indices global_attn = 0 token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0) token_indices = token_indices.expand(x.shape[0], -1) for blk in self.blocks3: cls_token, x = blk(cls_token, x) # upsample cls_token before stage4 cls_token = self.cls_upsample(cls_token) x = self.patch_embed4(x) # whether reset global attention? Now simple avgpool token_indices = torch.arange(x.shape[2] * x.shape[3], dtype=torch.long, device=x.device).unsqueeze(0) token_indices = token_indices.expand(x.shape[0], -1) for blk in self.blocks4: cls_token, x = blk(cls_token, x) if self.training: # layer normalization for cls_token cls_token = self.norm_cls(cls_token) x = self.norm(x) x = self.pre_logits(x) return cls_token, x def forward(self, x): cls_token, x = self.forward_features(x) x = x.flatten(2).mean(-1) if self.training: x = self.head(x), self.head_cls(cls_token.squeeze(1)) else: x = self.head(x) return x def uniformer_xxs_image(**kwargs): model = UniFormer_Light( depth=[2, 5, 8, 2], conv_stem=True, prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]], trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5]], embed_dim=[56, 112, 224, 448], head_dim=28, mlp_ratio=[3, 3, 3, 3], qkv_bias=True, **kwargs) model.default_cfg = _cfg() return model def uniformer_xs_image(**kwargs): model = UniFormer_Light( depth=[3, 5, 9, 3], conv_stem=True, prune_ratio=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], trade_off=[[], [], [1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], embed_dim=[64, 128, 256, 512], head_dim=32, mlp_ratio=[3, 3, 3, 3], qkv_bias=True, **kwargs) model.default_cfg = _cfg() return model if __name__ == '__main__': import time from fvcore.nn import FlopCountAnalysis from fvcore.nn import flop_count_table import numpy as np seed = 4217 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) model = uniformer_xxs_image() # print(model) flops = FlopCountAnalysis(model, torch.rand(1, 3, 160, 160)) s = time.time() print(flop_count_table(flops, max_depth=1)) print(time.time()-s)