import argparse import time import torch from mmcv import Config, DictAction from mmcv.cnn import fuse_conv_bn from mmcv.parallel import MMDataParallel from mmcv.runner import load_checkpoint, wrap_fp16_model from mmdet.datasets import (build_dataloader, build_dataset, replace_ImageToTensor) from mmdet.models import build_detector def parse_args(): parser = argparse.ArgumentParser(description='MMDet benchmark a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--log-interval', default=50, help='interval of logging') parser.add_argument( '--fuse-conv-bn', action='store_true', help='Whether to fuse conv and bn, this will slightly increase' 'the inference speed') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True # build the dataloader samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1) if samples_per_gpu > 1: # Replace 'ImageToTensor' to 'DefaultFormatBundle' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=False, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) load_checkpoint(model, args.checkpoint, map_location='cpu') if args.fuse_conv_bn: model = fuse_conv_bn(model) model = MMDataParallel(model, device_ids=[0]) model.eval() # the first several iterations may be very slow so skip them num_warmup = 5 pure_inf_time = 0 # benchmark with 2000 image and take the average for i, data in enumerate(data_loader): torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): model(return_loss=False, rescale=True, **data) torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if i >= num_warmup: pure_inf_time += elapsed if (i + 1) % args.log_interval == 0: fps = (i + 1 - num_warmup) / pure_inf_time print(f'Done image [{i + 1:<3}/ 2000], fps: {fps:.1f} img / s') if (i + 1) == 2000: pure_inf_time += elapsed fps = (i + 1 - num_warmup) / pure_inf_time print(f'Overall fps: {fps:.1f} img / s') break if __name__ == '__main__': main()