Spaces:
Build error
Build error
File size: 14,288 Bytes
cdfecf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa
# and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa
import glob
import os
import os.path as osp
import tempfile
from collections import OrderedDict
import mmcv
import numpy as np
import pycocotools.mask as maskUtils
from mmcv.utils import print_log
from .builder import DATASETS
from .coco import CocoDataset
@DATASETS.register_module()
class CityscapesDataset(CocoDataset):
CLASSES = ('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle')
def _filter_imgs(self, min_size=32):
"""Filter images too small or without ground truths."""
valid_inds = []
# obtain images that contain annotation
ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values())
# obtain images that contain annotations of the required categories
ids_in_cat = set()
for i, class_id in enumerate(self.cat_ids):
ids_in_cat |= set(self.coco.cat_img_map[class_id])
# merge the image id sets of the two conditions and use the merged set
# to filter out images if self.filter_empty_gt=True
ids_in_cat &= ids_with_ann
valid_img_ids = []
for i, img_info in enumerate(self.data_infos):
img_id = img_info['id']
ann_ids = self.coco.getAnnIds(imgIds=[img_id])
ann_info = self.coco.loadAnns(ann_ids)
all_iscrowd = all([_['iscrowd'] for _ in ann_info])
if self.filter_empty_gt and (self.img_ids[i] not in ids_in_cat
or all_iscrowd):
continue
if min(img_info['width'], img_info['height']) >= min_size:
valid_inds.append(i)
valid_img_ids.append(img_id)
self.img_ids = valid_img_ids
return valid_inds
def _parse_ann_info(self, img_info, ann_info):
"""Parse bbox and mask annotation.
Args:
img_info (dict): Image info of an image.
ann_info (list[dict]): Annotation info of an image.
Returns:
dict: A dict containing the following keys: bboxes, \
bboxes_ignore, labels, masks, seg_map. \
"masks" are already decoded into binary masks.
"""
gt_bboxes = []
gt_labels = []
gt_bboxes_ignore = []
gt_masks_ann = []
for i, ann in enumerate(ann_info):
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
if ann['area'] <= 0 or w < 1 or h < 1:
continue
if ann['category_id'] not in self.cat_ids:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if ann.get('iscrowd', False):
gt_bboxes_ignore.append(bbox)
else:
gt_bboxes.append(bbox)
gt_labels.append(self.cat2label[ann['category_id']])
gt_masks_ann.append(ann['segmentation'])
if gt_bboxes:
gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
gt_labels = np.array(gt_labels, dtype=np.int64)
else:
gt_bboxes = np.zeros((0, 4), dtype=np.float32)
gt_labels = np.array([], dtype=np.int64)
if gt_bboxes_ignore:
gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
else:
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
ann = dict(
bboxes=gt_bboxes,
labels=gt_labels,
bboxes_ignore=gt_bboxes_ignore,
masks=gt_masks_ann,
seg_map=img_info['segm_file'])
return ann
def results2txt(self, results, outfile_prefix):
"""Dump the detection results to a txt file.
Args:
results (list[list | tuple]): Testing results of the
dataset.
outfile_prefix (str): The filename prefix of the json files.
If the prefix is "somepath/xxx",
the txt files will be named "somepath/xxx.txt".
Returns:
list[str]: Result txt files which contains corresponding \
instance segmentation images.
"""
try:
import cityscapesscripts.helpers.labels as CSLabels
except ImportError:
raise ImportError('Please run "pip install citscapesscripts" to '
'install cityscapesscripts first.')
result_files = []
os.makedirs(outfile_prefix, exist_ok=True)
prog_bar = mmcv.ProgressBar(len(self))
for idx in range(len(self)):
result = results[idx]
filename = self.data_infos[idx]['filename']
basename = osp.splitext(osp.basename(filename))[0]
pred_txt = osp.join(outfile_prefix, basename + '_pred.txt')
bbox_result, segm_result = result
bboxes = np.vstack(bbox_result)
# segm results
if isinstance(segm_result, tuple):
# Some detectors use different scores for bbox and mask,
# like Mask Scoring R-CNN. Score of segm will be used instead
# of bbox score.
segms = mmcv.concat_list(segm_result[0])
mask_score = segm_result[1]
else:
# use bbox score for mask score
segms = mmcv.concat_list(segm_result)
mask_score = [bbox[-1] for bbox in bboxes]
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
assert len(bboxes) == len(segms) == len(labels)
num_instances = len(bboxes)
prog_bar.update()
with open(pred_txt, 'w') as fout:
for i in range(num_instances):
pred_class = labels[i]
classes = self.CLASSES[pred_class]
class_id = CSLabels.name2label[classes].id
score = mask_score[i]
mask = maskUtils.decode(segms[i]).astype(np.uint8)
png_filename = osp.join(outfile_prefix,
basename + f'_{i}_{classes}.png')
mmcv.imwrite(mask, png_filename)
fout.write(f'{osp.basename(png_filename)} {class_id} '
f'{score}\n')
result_files.append(pred_txt)
return result_files
def format_results(self, results, txtfile_prefix=None):
"""Format the results to txt (standard format for Cityscapes
evaluation).
Args:
results (list): Testing results of the dataset.
txtfile_prefix (str | None): The prefix of txt files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: (result_files, tmp_dir), result_files is a dict containing \
the json filepaths, tmp_dir is the temporal directory created \
for saving txt/png files when txtfile_prefix is not specified.
"""
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
if txtfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
txtfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
result_files = self.results2txt(results, txtfile_prefix)
return result_files, tmp_dir
def evaluate(self,
results,
metric='bbox',
logger=None,
outfile_prefix=None,
classwise=False,
proposal_nums=(100, 300, 1000),
iou_thrs=np.arange(0.5, 0.96, 0.05)):
"""Evaluation in Cityscapes/COCO protocol.
Args:
results (list[list | tuple]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. Options are
'bbox', 'segm', 'proposal', 'proposal_fast'.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
outfile_prefix (str | None): The prefix of output file. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If results are evaluated with COCO protocol, it would be the
prefix of output json file. For example, the metric is 'bbox'
and 'segm', then json files would be "a/b/prefix.bbox.json" and
"a/b/prefix.segm.json".
If results are evaluated with cityscapes protocol, it would be
the prefix of output txt/png files. The output files would be
png images under folder "a/b/prefix/xxx/" and the file name of
images would be written into a txt file
"a/b/prefix/xxx_pred.txt", where "xxx" is the video name of
cityscapes. If not specified, a temp file will be created.
Default: None.
classwise (bool): Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]): Proposal number used for evaluating
recalls, such as recall@100, recall@1000.
Default: (100, 300, 1000).
iou_thrs (Sequence[float]): IoU threshold used for evaluating
recalls. If set to a list, the average recall of all IoUs will
also be computed. Default: 0.5.
Returns:
dict[str, float]: COCO style evaluation metric or cityscapes mAP \
and AP@50.
"""
eval_results = dict()
metrics = metric.copy() if isinstance(metric, list) else [metric]
if 'cityscapes' in metrics:
eval_results.update(
self._evaluate_cityscapes(results, outfile_prefix, logger))
metrics.remove('cityscapes')
# left metrics are all coco metric
if len(metrics) > 0:
# create CocoDataset with CityscapesDataset annotation
self_coco = CocoDataset(self.ann_file, self.pipeline.transforms,
None, self.data_root, self.img_prefix,
self.seg_prefix, self.proposal_file,
self.test_mode, self.filter_empty_gt)
# TODO: remove this in the future
# reload annotations of correct class
self_coco.CLASSES = self.CLASSES
self_coco.data_infos = self_coco.load_annotations(self.ann_file)
eval_results.update(
self_coco.evaluate(results, metrics, logger, outfile_prefix,
classwise, proposal_nums, iou_thrs))
return eval_results
def _evaluate_cityscapes(self, results, txtfile_prefix, logger):
"""Evaluation in Cityscapes protocol.
Args:
results (list): Testing results of the dataset.
txtfile_prefix (str | None): The prefix of output txt file
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict[str: float]: Cityscapes evaluation results, contains 'mAP' \
and 'AP@50'.
"""
try:
import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa
except ImportError:
raise ImportError('Please run "pip install citscapesscripts" to '
'install cityscapesscripts first.')
msg = 'Evaluating in Cityscapes style'
if logger is None:
msg = '\n' + msg
print_log(msg, logger=logger)
result_files, tmp_dir = self.format_results(results, txtfile_prefix)
if tmp_dir is None:
result_dir = osp.join(txtfile_prefix, 'results')
else:
result_dir = osp.join(tmp_dir.name, 'results')
eval_results = OrderedDict()
print_log(f'Evaluating results under {result_dir} ...', logger=logger)
# set global states in cityscapes evaluation API
CSEval.args.cityscapesPath = os.path.join(self.img_prefix, '../..')
CSEval.args.predictionPath = os.path.abspath(result_dir)
CSEval.args.predictionWalk = None
CSEval.args.JSONOutput = False
CSEval.args.colorized = False
CSEval.args.gtInstancesFile = os.path.join(result_dir,
'gtInstances.json')
CSEval.args.groundTruthSearch = os.path.join(
self.img_prefix.replace('leftImg8bit', 'gtFine'),
'*/*_gtFine_instanceIds.png')
groundTruthImgList = glob.glob(CSEval.args.groundTruthSearch)
assert len(groundTruthImgList), 'Cannot find ground truth images' \
f' in {CSEval.args.groundTruthSearch}.'
predictionImgList = []
for gt in groundTruthImgList:
predictionImgList.append(CSEval.getPrediction(gt, CSEval.args))
CSEval_results = CSEval.evaluateImgLists(predictionImgList,
groundTruthImgList,
CSEval.args)['averages']
eval_results['mAP'] = CSEval_results['allAp']
eval_results['AP@50'] = CSEval_results['allAp50%']
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results
|