import streamlit as st from transformers import pipeline from PIL import Image import torch #function part def classify_image(image_path): # Load the pre-trained image classification model classifier = pipeline("image-classification", model="nateraw/vit-age-classifier") image = Image.open(image_path) predictions = classifier(image) return predictions st.set_page_config(page_title="Age Classifier", page_icon="📷") st.header("Image Age Classification") uploaded_file = st.file_uploader("Upload an Image...", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) # Perform image classification st.text('Classifying image...') predictions = classify_image(uploaded_file) # Display the top prediction if predictions: top_prediction = predictions[0] st.write(f"**Predicted Age Group:** {top_prediction['label']}") st.write(f"**Confidence:** {top_prediction['score']:.2f}")