import pandas as pd from typing import List def remove_nulls(df: pd.DataFrame, columns: List[str]) -> pd.DataFrame: for column in columns: df = df[df[column].notnull() & df[column].astype(str).str[0].str.isdigit()] return df def remove_na_accounts(df: pd.DataFrame) -> pd.DataFrame: df = df.dropna(subset=['Account']) return df def remove_empty_columns(df: pd.DataFrame) -> pd.DataFrame: df = df.dropna(how='all', axis=1) return df def handle_unknown_columns(df: pd.DataFrame) -> pd.DataFrame: df = df.apply(lambda x: x[x.astype(str).str[0].str.isdigit()] if x.dtype in ['object', 'int64'] else x) return df def rename_columns(df: pd.DataFrame) -> pd.DataFrame: if len(df.columns) == 10: df.columns = ['Account', 'Description', 'Opening Balance Debit', 'Opening Balance Credit', 'Current Transactions Debit', 'Current Transactions Credit', 'Total Transactions Debit', 'Total Transactions Credit', 'Closing Balance Debit', 'Closing Balance Credit'] elif len(df.columns) == 8: df.columns = ['Account', 'Description', 'Opening Balance Debit', 'Opening Balance Credit', 'Current Transactions Debit', 'Current Transactions Credit', 'Closing Balance Debit', 'Closing Balance Credit'] return df def convert_to_float(df: pd.DataFrame, skip_columns: List[str]) -> pd.DataFrame: df = df.apply(lambda x: x.astype(str).str.replace(',', '').astype(float) if x.name not in skip_columns else x) return df def process_dataframe(df: pd.DataFrame, *args) -> pd.DataFrame: df = remove_nulls(df, args) df = remove_empty_columns(df) df = handle_unknown_columns(df) df = rename_columns(df) df = convert_to_float(df, ['Account', 'Description']) return df def rename_columns_je(df): column_mapping = { 'Cont debitor': 'Account Debit', 'Cont creditor': 'Account Credit', 'Suma': 'Amount' } df.rename(columns=column_mapping, inplace=True) return df def process_journal(df: pd.DataFrame) -> pd.DataFrame: df = rename_columns_je(df) transactions_dr = df.groupby('Account Debit').agg({'Amount': 'sum'}).reset_index().rename(columns={'Amount': 'Debit Amount', 'Account Debit': 'Account'}) transactions_cr = df.groupby('Account Credit').agg({'Amount': 'sum'}).reset_index().rename(columns={'Amount': 'Credit Amount', 'Account Credit': 'Account'}) df_out = pd.merge(transactions_dr, transactions_cr, on='Account', how='outer') df_out.fillna(0, inplace=True) return df_out