Andersonpepple
commited on
Commit
•
114fee9
1
Parent(s):
61f235c
pidgin-english hate speech detection
Browse files- app.py +33 -58
- requirements.txt +6 -1
app.py
CHANGED
@@ -1,63 +1,38 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
demo.launch()
|
|
|
1 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification, Trainer, TrainingArguments
|
2 |
+
from transformers import DataCollatorWithPadding
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
import gradio as gr
|
|
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
load_tokenizer = RobertaTokenizer.from_pretrained("./saved_model")
|
9 |
+
load_model = RobertaForSequenceClassification.from_pretrained("./saved_model")
|
10 |
+
|
11 |
+
# Define the prediction function
|
12 |
+
def predict(text):
|
13 |
+
inputs = load_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = load_model(**inputs)
|
16 |
+
logits = outputs.logits
|
17 |
+
prediction = torch.argmax(logits, dim=1).item()
|
18 |
+
return "Hate speech detected" if prediction == 1 else "Hate speech not detected"
|
19 |
+
|
20 |
+
# Create Gradio interface
|
21 |
+
iface = gr.Interface(
|
22 |
+
fn=predict,
|
23 |
+
inputs="text",
|
24 |
+
outputs="text",
|
25 |
+
title="Hate Speech Detection System",
|
26 |
+
description="Enter a Pidgin or English text to check if it contains hate speech.",
|
27 |
+
examples = [
|
28 |
+
["Yoruba men dey craze"],
|
29 |
+
["Yoruba men are crazy"],
|
30 |
+
["How una dey"],
|
31 |
+
["How are you"],
|
32 |
+
["All these Christians dey mad"],
|
33 |
+
["All Christians are mad"]
|
34 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
)
|
36 |
|
37 |
+
# Launch the Gradio interface
|
38 |
+
iface.launch()
|
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
numpy
|
6 |
+
scikit-learn
|