Andersonpepple commited on
Commit
114fee9
1 Parent(s): 61f235c

pidgin-english hate speech detection

Browse files
Files changed (2) hide show
  1. app.py +33 -58
  2. requirements.txt +6 -1
app.py CHANGED
@@ -1,63 +1,38 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from transformers import RobertaTokenizer, RobertaForSequenceClassification, Trainer, TrainingArguments
2
+ from transformers import DataCollatorWithPadding
3
+ import torch
4
+ import numpy as np
5
  import gradio as gr
 
6
 
 
 
 
 
7
 
8
+ load_tokenizer = RobertaTokenizer.from_pretrained("./saved_model")
9
+ load_model = RobertaForSequenceClassification.from_pretrained("./saved_model")
10
+
11
+ # Define the prediction function
12
+ def predict(text):
13
+ inputs = load_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
14
+ with torch.no_grad():
15
+ outputs = load_model(**inputs)
16
+ logits = outputs.logits
17
+ prediction = torch.argmax(logits, dim=1).item()
18
+ return "Hate speech detected" if prediction == 1 else "Hate speech not detected"
19
+
20
+ # Create Gradio interface
21
+ iface = gr.Interface(
22
+ fn=predict,
23
+ inputs="text",
24
+ outputs="text",
25
+ title="Hate Speech Detection System",
26
+ description="Enter a Pidgin or English text to check if it contains hate speech.",
27
+ examples = [
28
+ ["Yoruba men dey craze"],
29
+ ["Yoruba men are crazy"],
30
+ ["How una dey"],
31
+ ["How are you"],
32
+ ["All these Christians dey mad"],
33
+ ["All Christians are mad"]
34
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  )
36
 
37
+ # Launch the Gradio interface
38
+ iface.launch()
 
requirements.txt CHANGED
@@ -1 +1,6 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
1
+ transformers
2
+ datasets
3
+ torch
4
+ gradio
5
+ numpy
6
+ scikit-learn