from ultralytics import YOLO import numpy as np import matplotlib.pyplot as plt import gradio as gr import cv2 import torch from PIL import Image # Load the pre-trained model model = YOLO('checkpoints/FastSAM.pt') # Description title = "
🏃 Fast Segment Anything 🤗
" description = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). 🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon. ⌛️ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. 🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. 📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing) 😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant. 🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM) """ examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"], ["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]] default_example = examples[0] css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" def fast_process(annotations, image, high_quality, device, scale): if isinstance(annotations[0],dict): annotations = [annotation['segmentation'] for annotation in annotations] original_h = image.height original_w = image.width if high_quality == True: if isinstance(annotations[0],torch.Tensor): annotations = np.array(annotations.cpu()) for i, mask in enumerate(annotations): mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) if device == 'cpu': annotations = np.array(annotations) inner_mask = fast_show_mask(annotations, plt.gca(), bbox=None, points=None, pointlabel=None, retinamask=True, target_height=original_h, target_width=original_w) else: if isinstance(annotations[0],np.ndarray): annotations = torch.from_numpy(annotations) inner_mask = fast_show_mask_gpu(annotations, plt.gca(), bbox=None, points=None, pointlabel=None) if isinstance(annotations, torch.Tensor): annotations = annotations.cpu().numpy() if high_quality: contour_all = [] temp = np.zeros((original_h, original_w,1)) for i, mask in enumerate(annotations): if type(mask) == dict: mask = mask['segmentation'] annotation = mask.astype(np.uint8) contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: contour_all.append(contour) cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale) color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9]) contour_mask = temp / 255 * color.reshape(1, 1, -1) image = image.convert('RGBA') overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA') image.paste(overlay_inner, (0, 0), overlay_inner) if high_quality: overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA') image.paste(overlay_contour, (0, 0), overlay_contour) return image # CPU post process def fast_show_mask(annotation, ax, bbox=None, points=None, pointlabel=None, retinamask=True, target_height=960, target_width=960): msak_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] # 将annotation 按照面积 排序 areas = np.sum(annotation, axis=(1, 2)) sorted_indices = np.argsort(areas)[::1] annotation = annotation[sorted_indices] index = (annotation != 0).argmax(axis=0) color = np.random.random((msak_sum,1,1,3)) transparency = np.ones((msak_sum,1,1,1)) * 0.6 visual = np.concatenate([color,transparency],axis=-1) mask_image = np.expand_dims(annotation,-1) * visual mask = np.zeros((height,weight,4)) h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 mask[h_indices, w_indices, :] = mask_image[indices] if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) # draw point if points is not None: plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y') plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m') if retinamask==False: mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST) return mask def fast_show_mask_gpu(annotation, ax, bbox=None, points=None, pointlabel=None): msak_sum = annotation.shape[0] height = annotation.shape[1] weight = annotation.shape[2] areas = torch.sum(annotation, dim=(1, 2)) sorted_indices = torch.argsort(areas, descending=False) annotation = annotation[sorted_indices] # 找每个位置第一个非零值下标 index = (annotation != 0).to(torch.long).argmax(dim=0) color = torch.rand((msak_sum,1,1,3)).to(annotation.device) transparency = torch.ones((msak_sum,1,1,1)).to(annotation.device) * 0.6 visual = torch.cat([color,transparency],dim=-1) mask_image = torch.unsqueeze(annotation,-1) * visual # 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式 mask = torch.zeros((height,weight,4)).to(annotation.device) h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight)) indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) # 使用向量化索引更新show的值 mask[h_indices, w_indices, :] = mask_image[indices] mask_cpu = mask.cpu().numpy() if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) # draw point if points is not None: plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y') plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m') return mask_cpu device = 'cuda' if torch.cuda.is_available() else 'cpu' def segment_image(input, evt: gr.SelectData=None, input_size=1024, high_visual_quality=True, iou_threshold=0.7, conf_threshold=0.25): point = (evt.index[0],evt.index[1]) input_size = int(input_size) # 确保 imgsz 是整数 # Thanks for the suggestion by hysts in HuggingFace. w, h = input.size scale = input_size / max(w, h) new_w = int(w * scale) new_h = int(h * scale) input = input.resize((new_w, new_h)) results = model(input, device=device, retina_masks=True, iou=iou_threshold, conf=conf_threshold, imgsz=input_size) fig = fast_process(annotations=results[0].masks.data, image=input, high_quality=high_visual_quality, device=device, scale=(1024 // input_size), points=) return fig # input_size=1024 # high_quality_visual=True # inp = 'assets/sa_192.jpg' # input = Image.open(inp) # device = 'cuda' if torch.cuda.is_available() else 'cpu' # input_size = int(input_size) # 确保 imgsz 是整数 # results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) # pil_image = fast_process(annotations=results[0].masks.data, # image=input, high_quality=high_quality_visual, device=device) cond_img = gr.Image(label="Input", value=default_example[0], type='pil') segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil') input_size_slider = gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='Input_size (Our model was trained on a size of 1024)') with gr.Blocks(css=css, title='Fast Segment Anything') as demo: with gr.Row(): # Title gr.Markdown(title) # # # Description # # gr.Markdown(description) # Images with gr.Row(variant="panel"): with gr.Column(scale=1): cond_img.render() with gr.Column(scale=1): segm_img.render() # Submit & Clear with gr.Row(): with gr.Column(): input_size_slider.render() with gr.Row(): vis_check = gr.Checkbox(value=True, label='high_visual_quality') with gr.Column(): segment_btn = gr.Button("Segment Anything", variant='primary') # with gr.Column(): # clear_btn = gr.Button("Clear", variant="primary") gr.Markdown("Try some of the examples below ⬇️") gr.Examples(examples=examples, inputs=[cond_img], outputs=segm_img, fn=segment_image, cache_examples=True, examples_per_page=4) # gr.Markdown("Try some of the examples below ⬇️") # gr.Examples(examples=examples, # inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold], # outputs=output, # fn=segment_image, # examples_per_page=4) with gr.Column(): with gr.Accordion("Advanced options", open=False): iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold') conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold') # Description gr.Markdown(description) cond_img.select(segment_image, [], input_img) segment_btn.click(segment_image, inputs=[cond_img, input_size_slider, vis_check, iou_threshold, conf_threshold], outputs=segm_img) # def clear(): # return None, None # clear_btn.click(fn=clear, inputs=None, outputs=None) demo.queue() demo.launch() # app_interface = gr.Interface(fn=predict, # inputs=[gr.Image(type='pil'), # gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'), # gr.components.Checkbox(value=True, label='high_visual_quality')], # # outputs=['plot'], # outputs=gr.Image(type='pil'), # # examples=[["assets/sa_8776.jpg"]], # # # ["assets/sa_1309.jpg", 1024]], # examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], # ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], # ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], # ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], # cache_examples=True, # title="Fast Segment Anything (Everything mode)" # ) # app_interface.queue(concurrency_count=1, max_size=20) # app_interface.launch()