from fastai.vision.all import * from io import BytesIO import requests import streamlit as st """ # U-Net This is a segmentation model for images of Brain MRI. """ def predict(img): st.image(img, caption="Your image", use_column_width=True) pred_mask = learn_inf.predict(img)[0] pred_mask = pred_mask.numpy()*255 # pred, key, probs = learn_inf.predict(img) # st.write(learn_inf.predict(img)) f""" ### Rediction result: """ st.image(pred_mask, caption="Prediction Mask", use_column_width=True) def label_func(x): return x.parents[0] / (x.stem + '_mask' + x.suffix) path = "./" learn_inf = load_learner(path + "model-34") option = st.radio("", ["Upload Image", "Image URL"]) if option == "Upload Image": uploaded_file = st.file_uploader("Please upload an image.") if uploaded_file is not None: img = PILImage.create(uploaded_file) predict(img) else: url = st.text_input("Please input a url.") if url != "": try: response = requests.get(url) pil_img = PILImage.create(BytesIO(response.content)) predict(pil_img) except: st.text("Problem reading image from", url)