AmmarFahmy
adding all files
105b369
import json
from textwrap import dedent
from typing import Optional, List, Dict, Any, Iterator
from phi.llm.base import LLM
from phi.llm.message import Message
from phi.tools.function import FunctionCall
from phi.utils.log import logger
from phi.utils.timer import Timer
from phi.utils.tools import get_function_call_for_tool_call
try:
from cohere import Client as CohereClient
from cohere.types.tool import Tool as CohereTool
from cohere.types.tool_call import ToolCall as CohereToolCall
from cohere.types.non_streamed_chat_response import NonStreamedChatResponse
from cohere.types.streamed_chat_response import (
StreamedChatResponse,
StreamedChatResponse_StreamStart,
StreamedChatResponse_TextGeneration,
StreamedChatResponse_ToolCallsGeneration,
)
from cohere.types.chat_request_tool_results_item import ChatRequestToolResultsItem
from cohere.types.tool_parameter_definitions_value import ToolParameterDefinitionsValue
except ImportError:
logger.error("`cohere` not installed")
raise
class CohereChat(LLM):
name: str = "cohere"
model: str = "command-r"
# -*- Request parameters
temperature: Optional[float] = None
max_tokens: Optional[int] = None
top_k: Optional[int] = None
top_p: Optional[float] = None
frequency_penalty: Optional[float] = None
presence_penalty: Optional[float] = None
request_params: Optional[Dict[str, Any]] = None
# Add chat history to the cohere messages instead of using the conversation_id
add_chat_history: bool = False
# -*- Client parameters
api_key: Optional[str] = None
client_params: Optional[Dict[str, Any]] = None
# -*- Provide the Cohere client manually
cohere_client: Optional[CohereClient] = None
@property
def client(self) -> CohereClient:
if self.cohere_client:
return self.cohere_client
_client_params: Dict[str, Any] = {}
if self.api_key:
_client_params["api_key"] = self.api_key
return CohereClient(**_client_params)
@property
def api_kwargs(self) -> Dict[str, Any]:
_request_params: Dict[str, Any] = {}
if self.run_id is not None:
_request_params["conversation_id"] = self.run_id
if self.temperature:
_request_params["temperature"] = self.temperature
if self.max_tokens:
_request_params["max_tokens"] = self.max_tokens
if self.top_k:
_request_params["top_k"] = self.top_k
if self.top_p:
_request_params["top_p"] = self.top_p
if self.frequency_penalty:
_request_params["frequency_penalty"] = self.frequency_penalty
if self.presence_penalty:
_request_params["presence_penalty"] = self.presence_penalty
if self.request_params:
_request_params.update(self.request_params)
return _request_params
def get_tools(self) -> Optional[List[CohereTool]]:
if not self.functions:
return None
# Returns the tools in the format required by the Cohere API
return [
CohereTool(
name=f_name,
description=function.description or "",
parameter_definitions={
param_name: ToolParameterDefinitionsValue(
type=param_info["type"] if isinstance(param_info["type"], str) else param_info["type"][0],
required="null" not in param_info["type"],
)
for param_name, param_info in function.parameters.get("properties", {}).items()
},
)
for f_name, function in self.functions.items()
]
def invoke(
self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None
) -> NonStreamedChatResponse:
api_kwargs: Dict[str, Any] = self.api_kwargs
chat_message: Optional[str] = None
if self.add_chat_history:
logger.debug("Providing chat_history to cohere")
chat_history = []
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.content
elif m.role == "user":
if chat_message is not None:
# Add the existing chat_message to the chat_history
chat_history.append({"role": "USER", "message": chat_message})
# Update the chat_message to the new user message
chat_message = m.get_content_string()
else:
chat_history.append({"role": "CHATBOT", "message": m.get_content_string() or ""})
api_kwargs["chat_history"] = chat_history
else:
# Set first system message as preamble
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.get_content_string()
break
# Set last user message as chat_message
for m in reversed(messages):
if m.role == "user":
chat_message = m.get_content_string()
break
if self.tools:
api_kwargs["tools"] = self.get_tools()
if tool_results:
api_kwargs["tool_results"] = tool_results
return self.client.chat(message=chat_message or "", model=self.model, **api_kwargs)
def invoke_stream(
self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None
) -> Iterator[StreamedChatResponse]:
api_kwargs: Dict[str, Any] = self.api_kwargs
chat_message: Optional[str] = None
if self.add_chat_history:
logger.debug("Providing chat_history to cohere")
chat_history = []
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.get_content_string()
elif m.role == "user":
if chat_message is not None:
# Add the existing chat_message to the chat_history
chat_history.append({"role": "USER", "message": chat_message})
# Update the chat_message to the new user message
chat_message = m.get_content_string()
else:
chat_history.append({"role": "CHATBOT", "message": m.get_content_string() or ""})
api_kwargs["chat_history"] = chat_history
else:
# Set first system message as preamble
for m in messages:
if m.role == "system" and "preamble" not in api_kwargs:
api_kwargs["preamble"] = m.get_content_string()
break
# Set last user message as chat_message
for m in reversed(messages):
if m.role == "user":
chat_message = m.get_content_string()
break
if self.tools:
api_kwargs["tools"] = self.get_tools()
if tool_results:
api_kwargs["tool_results"] = tool_results
logger.debug(f"Chat message: {chat_message}")
return self.client.chat_stream(message=chat_message or "", model=self.model, **api_kwargs)
def response(self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None) -> str:
logger.debug("---------- Cohere Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
response_timer = Timer()
response_timer.start()
response: NonStreamedChatResponse = self.invoke(messages=messages, tool_results=tool_results)
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# -*- Parse response
response_content = response.text
response_tool_calls: Optional[List[CohereToolCall]] = response.tool_calls
# -*- Create assistant message
assistant_message = Message(role="assistant", content=response_content)
# -*- Get tool calls from response
if response_tool_calls:
tool_calls: List[Dict[str, Any]] = []
for tools in response_tool_calls:
tool_calls.append(
{
"type": "function",
"function": {
"name": tools.name,
"arguments": json.dumps(tools.parameters),
},
}
)
if len(tool_calls) > 0:
assistant_message.tool_calls = tool_calls
# -*- Update usage metrics
# Add response time to metrics
assistant_message.metrics["time"] = response_timer.elapsed
if "response_times" not in self.metrics:
self.metrics["response_times"] = []
self.metrics["response_times"].append(response_timer.elapsed)
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Run function call
if assistant_message.tool_calls is not None and self.run_tools:
final_response = ""
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(Message(role="user", content="Could not find function to call."))
continue
if _function_call.error is not None:
messages.append(Message(role="user", content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
final_response += f" - Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
final_response += "Running:"
for _f in function_calls_to_run:
final_response += f"\n - {_f.get_call_str()}"
final_response += "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run, role="user")
# Making sure the length of tool calls and function call results are the same to avoid unexpected behavior
if response_tool_calls is not None and 0 < len(function_call_results) == len(response_tool_calls):
# Constructs a list named tool_results, where each element is a dictionary that contains details of tool calls and their outputs.
# It pairs each tool call in response_tool_calls with its corresponding result in function_call_results.
tool_results = [
ChatRequestToolResultsItem(
call=tool_call, outputs=[tool_call.parameters, {"result": fn_result.content}]
)
for tool_call, fn_result in zip(response_tool_calls, function_call_results)
]
messages.append(Message(role="user", content="Tool result"))
# logger.debug(f"Tool results: {tool_results}")
# -*- Yield new response using results of tool calls
final_response += self.response(messages=messages, tool_results=tool_results)
return final_response
logger.debug("---------- Cohere Response End ----------")
# -*- Return content if no function calls are present
if assistant_message.content is not None:
return assistant_message.get_content_string()
return "Something went wrong, please try again."
def response_stream(
self, messages: List[Message], tool_results: Optional[List[ChatRequestToolResultsItem]] = None
) -> Any:
logger.debug("---------- Cohere Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
assistant_message_content = ""
tool_calls: List[Dict[str, Any]] = []
response_tool_calls: List[CohereToolCall] = []
response_timer = Timer()
response_timer.start()
for response in self.invoke_stream(messages=messages, tool_results=tool_results):
# logger.debug(f"Cohere response type: {type(response)}")
# logger.debug(f"Cohere response: {response}")
if isinstance(response, StreamedChatResponse_StreamStart):
pass
if isinstance(response, StreamedChatResponse_TextGeneration):
if response.text is not None:
assistant_message_content += response.text
yield response.text
# Detect if response is a tool call
if isinstance(response, StreamedChatResponse_ToolCallsGeneration):
for tc in response.tool_calls:
response_tool_calls.append(tc)
tool_calls.append(
{
"type": "function",
"function": {
"name": tc.name,
"arguments": json.dumps(tc.parameters),
},
}
)
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# -*- Create assistant message
assistant_message = Message(role="assistant", content=assistant_message_content)
# -*- Add tool calls to assistant message
if len(tool_calls) > 0:
assistant_message.tool_calls = tool_calls
# -*- Update usage metrics
# Add response time to metrics
assistant_message.metrics["time"] = response_timer.elapsed
if "response_times" not in self.metrics:
self.metrics["response_times"] = []
self.metrics["response_times"].append(response_timer.elapsed)
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Parse and run function call
if assistant_message.tool_calls is not None and self.run_tools:
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(Message(role="user", content="Could not find function to call."))
continue
if _function_call.error is not None:
messages.append(Message(role="user", content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
yield f"- Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
yield "Running:"
for _f in function_calls_to_run:
yield f"\n - {_f.get_call_str()}"
yield "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run, role="user")
# Making sure the length of tool calls and function call results are the same to avoid unexpected behavior
if response_tool_calls is not None and 0 < len(function_call_results) == len(tool_calls):
# Constructs a list named tool_results, where each element is a dictionary that contains details of tool calls and their outputs.
# It pairs each tool call in response_tool_calls with its corresponding result in function_call_results.
tool_results = [
ChatRequestToolResultsItem(
call=tool_call, outputs=[tool_call.parameters, {"result": fn_result.content}]
)
for tool_call, fn_result in zip(response_tool_calls, function_call_results)
]
messages.append(Message(role="user", content="Tool result"))
# logger.debug(f"Tool results: {tool_results}")
# -*- Yield new response using results of tool calls
yield from self.response_stream(messages=messages, tool_results=tool_results)
logger.debug("---------- Cohere Response End ----------")
def get_tool_call_prompt(self) -> Optional[str]:
if self.functions is not None and len(self.functions) > 0:
preamble = """\
## Task & Context
You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging.
## Style Guide
Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.
"""
return dedent(preamble)
return None
def get_system_prompt_from_llm(self) -> Optional[str]:
return self.get_tool_call_prompt()