import streamlit as st from PIL import Image import torch import json from transformers import AutoFeatureExtractor, AutoModelForImageClassification extractor = AutoFeatureExtractor.from_pretrained("Amite5h/convnext-tiny-finetuned-eurosat") model = AutoModelForImageClassification.from_pretrained("Amite5h/convnext-tiny-finetuned-eurosat") st.title("EuroSAT Detection") file_name = st.file_uploader("Upload a hot dog candidate image") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) if image.mode != "RGB": image = image.convert("RGB") col1.image(image, use_column_width=True) # Convert grayscale image to RGB format image_tensor = extractor(images=image, return_tensors="pt")["pixel_values"] predictions = model(image_tensor) predicted_probabilities = torch.softmax(outputs.logits, dim=1)[0] predicted_labels = model.config.id2label # Create a dictionary of labels and probabilities label_probabilities = { predicted_labels[i]: predicted_probabilities[i].item() for i in range(len(predicted_labels)) } # Convert the output to JSON string json_output = json.dumps(label_probabilities) #predicted_class = torch.argmax(predictions.logits, dim=1) col2.header("Probabilities") col2.subheader(json_output) # col2.header("Probabilities") # for p in predictions: # col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")