""" References: - VectorQuantizer2: https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/taming/modules/vqvae/quantize.py#L110 - GumbelQuantize: https://github.com/CompVis/taming-transformers/blob/3ba01b241669f5ade541ce990f7650a3b8f65318/taming/modules/vqvae/quantize.py#L213 - VQVAE (VQModel): https://github.com/CompVis/stable-diffusion/blob/21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/models/autoencoder.py#L14 """ from typing import Any, Dict, List, Optional, Sequence, Tuple, Union import torch import torch.nn as nn from .basic_vae import Decoder, Encoder from .quant import VectorQuantizer2 class VQVAE(nn.Module): def __init__( self, vocab_size=4096, z_channels=32, ch=128, dropout=0.0, beta=0.25, # commitment loss weight using_znorm=False, # whether to normalize when computing the nearest neighbors quant_conv_ks=3, # quant conv kernel size quant_resi=0.5, # 0.5 means \phi(x) = 0.5conv(x) + (1-0.5)x share_quant_resi=4, # use 4 \phi layers for K scales: partially-shared \phi default_qresi_counts=0, # if is 0: automatically set to len(v_patch_nums) v_patch_nums=(1, 2, 3, 4, 5, 6, 8, 10, 13, 16), # number of patches for each scale, h_{1 to K} = w_{1 to K} = v_patch_nums[k] test_mode=True, ): super().__init__() self.test_mode = test_mode self.V, self.Cvae = vocab_size, z_channels # ddconfig is copied from https://github.com/CompVis/latent-diffusion/blob/e66308c7f2e64cb581c6d27ab6fbeb846828253b/models/first_stage_models/vq-f16/config.yaml ddconfig = dict( dropout=dropout, ch=ch, z_channels=z_channels, in_channels=3, ch_mult=(1, 1, 2, 2, 4), num_res_blocks=2, # from vq-f16/config.yaml above using_sa=True, using_mid_sa=True, # from vq-f16/config.yaml above # resamp_with_conv=True, # always True, removed. ) ddconfig.pop('double_z', None) # only KL-VAE should use double_z=True self.encoder = Encoder(double_z=False, **ddconfig) self.decoder = Decoder(**ddconfig) self.vocab_size = vocab_size self.downsample = 2 ** (len(ddconfig['ch_mult'])-1) self.quantize: VectorQuantizer2 = VectorQuantizer2( vocab_size=vocab_size, Cvae=self.Cvae, using_znorm=using_znorm, beta=beta, default_qresi_counts=default_qresi_counts, v_patch_nums=v_patch_nums, quant_resi=quant_resi, share_quant_resi=share_quant_resi, ) self.quant_conv = torch.nn.Conv2d(self.Cvae, self.Cvae, quant_conv_ks, stride=1, padding=quant_conv_ks//2) self.post_quant_conv = torch.nn.Conv2d(self.Cvae, self.Cvae, quant_conv_ks, stride=1, padding=quant_conv_ks//2) if self.test_mode: self.eval() [p.requires_grad_(False) for p in self.parameters()] # ===================== `forward` is only used in VAE training ===================== def forward(self, inp, ret_usages=False): # -> rec_B3HW, idx_N, loss VectorQuantizer2.forward f_hat, usages, vq_loss = self.quantize(self.quant_conv(self.encoder(inp)), ret_usages=ret_usages) return self.decoder(self.post_quant_conv(f_hat)), usages, vq_loss # ===================== `forward` is only used in VAE training ===================== def fhat_to_img(self, f_hat: torch.Tensor): return self.decoder(self.post_quant_conv(f_hat)).clamp_(-1, 1) def img_to_idxBl(self, inp_img_no_grad: torch.Tensor, v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None) -> List[torch.LongTensor]: # return List[Bl] f = self.quant_conv(self.encoder(inp_img_no_grad)) return self.quantize.f_to_idxBl_or_fhat(f, to_fhat=False, v_patch_nums=v_patch_nums) def idxBl_to_img(self, ms_idx_Bl: List[torch.Tensor], same_shape: bool, last_one=False) -> Union[List[torch.Tensor], torch.Tensor]: B = ms_idx_Bl[0].shape[0] ms_h_BChw = [] for idx_Bl in ms_idx_Bl: l = idx_Bl.shape[1] pn = round(l ** 0.5) ms_h_BChw.append(self.quantize.embedding(idx_Bl).transpose(1, 2).view(B, self.Cvae, pn, pn)) return self.embed_to_img(ms_h_BChw=ms_h_BChw, all_to_max_scale=same_shape, last_one=last_one) def embed_to_img(self, ms_h_BChw: List[torch.Tensor], all_to_max_scale: bool, last_one=False) -> Union[List[torch.Tensor], torch.Tensor]: if last_one: return self.decoder(self.post_quant_conv(self.quantize.embed_to_fhat(ms_h_BChw, all_to_max_scale=all_to_max_scale, last_one=True))).clamp_(-1, 1) else: return [self.decoder(self.post_quant_conv(f_hat)).clamp_(-1, 1) for f_hat in self.quantize.embed_to_fhat(ms_h_BChw, all_to_max_scale=all_to_max_scale, last_one=False)] def img_to_reconstructed_img(self, x, v_patch_nums: Optional[Sequence[Union[int, Tuple[int, int]]]] = None, last_one=False) -> List[torch.Tensor]: f = self.quant_conv(self.encoder(x)) ls_f_hat_BChw = self.quantize.f_to_idxBl_or_fhat(f, to_fhat=True, v_patch_nums=v_patch_nums) if last_one: return self.decoder(self.post_quant_conv(ls_f_hat_BChw[-1])).clamp_(-1, 1) else: return [self.decoder(self.post_quant_conv(f_hat)).clamp_(-1, 1) for f_hat in ls_f_hat_BChw] def load_state_dict(self, state_dict: Dict[str, Any], strict=True, assign=False): if 'quantize.ema_vocab_hit_SV' in state_dict and state_dict['quantize.ema_vocab_hit_SV'].shape[0] != self.quantize.ema_vocab_hit_SV.shape[0]: state_dict['quantize.ema_vocab_hit_SV'] = self.quantize.ema_vocab_hit_SV return super().load_state_dict(state_dict=state_dict, strict=strict, assign=assign)