# TensorFlow and tf.keras import tensorflow as tf # Helper libraries import numpy as np import cv2 import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report import h5py import gradio as gr #category cat = ['EIGHT', 'FIVE', 'FOUR', 'NINE', 'ONE', 'SEVEN', 'SIX', 'THREE', 'TWO', 'ZERO'] def predict_image(img): model=tf.keras.models.load_model('Exp33DIG.hdf5') img_4d=img.reshape(-1,224,224,1) prediction=model.predict(img_4d)[0] return {cat[i]: float(prediction[i]) for i in range(10)} image = gr.inputs.Image(shape=(224,224)) label = gr.outputs.Label(num_top_classes=10) gr.Interface(fn=predict_image, inputs=image, outputs=label, title="Sign Language Digit", allow_flagging="never").launch(debug='True')