import pandas as pd import panel as pn from datetime import datetime from datetime import date pn.extension('bokeh', template='bootstrap') import hvplot.pandas import pandas as pd import yfinance as yf import panel as pn @pn.cache def get_df(ticker, startdate , enddate , interval="1d",window=50,window2=150): # interval="1d" # get_df(ticker ="PG", startdate="2000-01-01" , enddate="2023-09-01" , interval="1d") DF = yf.Ticker(ticker).history(start=startdate,end=enddate,interval=interval) DF['SMA'] = DF.Close.rolling(window=window).mean() DF['SMA2'] = DF.Close.rolling(window=window2).mean() DF = DF.reset_index() return DF def get_hvplot(ticker , startdate , enddate , interval,window,window2): DF = get_df(ticker , startdate=startdate , enddate=enddate , interval=interval,window=window,window2=window2) import hvplot.pandas # Ensure hvplot is installed (pip install hvplot) from sklearn.linear_model import LinearRegression import holoviews as hv hv.extension('bokeh') # Assuming your dataframe is named 'df' with columns 'Date' and 'Close' # If not, replace 'Date' and 'Close' with your actual column names. # Step 1: Create a scatter plot using hvplot scatter_plot = DF.hvplot(x='Date', y='Close', kind='scatter',title=f'{ticker} Close vs. Date') # Step 2: Fit a linear regression model DF['Date2'] = pd.to_numeric(DF['Date']) X = DF[['Date2']] y = DF[['Close']] #.values model = LinearRegression().fit(X, y) # # Step 3: Predict using the linear regression model DF['Predicted_Close'] = model.predict(X) # # Step 4: Create a line plot for linear regression line_plot = DF.hvplot(x='Date', y='Predicted_Close', kind='line',line_dash='dashed', color='red') line_plot_SMA = DF.hvplot(x='Date', y='SMA', kind='line',line_dash='dashed', color='orange') line_plot_SMA2 = DF.hvplot(x='Date', y='SMA2', kind='line',line_dash='dashed', color='orange') # # Step 5: Overlay scatter plot and linear regression line # return (scatter_plot * line_plot).opts(width=800, height=600, show_grid=True, gridstyle={ 'grid_line_color': 'gray'}) # grid_style = {'grid_line_color': 'black'}#, 'grid_line_width': 1.5, 'ygrid_bounds': (0.3, 0.7),'minor_xgrid_line_color': 'lightgray', 'xgrid_line_dash': [4, 4]} return (scatter_plot * line_plot *line_plot_SMA *line_plot_SMA2).opts(width=800, height=600, show_grid=True) def get_income_statement_df(ticker): yfobj = yf.Ticker(ticker) df= yfobj.financials.T df.index = pd.to_datetime(df.index, format='%Y-%m-%d') return df def get_income_hvplot(ticker): DF = get_income_statement_df(ticker) plt1 = DF.hvplot.line(y='Total Revenue') * DF.hvplot.scatter(y='Total Revenue').opts(color="red") plt1.opts(width=600, height=450, show_grid=True) plt2 = DF.hvplot.line(y='Gross Profit') * DF.hvplot.scatter(y='Gross Profit').opts(color="red") plt2.opts(width=600, height=450, show_grid=True) plt3 = DF.hvplot.line(y='Net Income') * DF.hvplot.scatter(y='Net Income').opts(color="red") plt3.opts(width=600, height=450, show_grid=True) return pn.Column(plt1 , plt2 , plt3 ) # return ( DF.hvplot.line(y='Net Income') * DF.hvplot.scatter(y='Net Income').opts(color="red") )+ (DF.hvplot.line(y='Gross Profit') * DF.hvplot.scatter(y='Gross Profit').opts(color="red") )+ # (DF.hvplot.line(y='Total Revenue') * DF.hvplot.scatter(y='Total Revenue').opts(color="red") ) def lookup_discountedrate(betavalue): betavsdiscountedrate = {1: 5, 1: 6, 1.1: 6.5, 1.2: 7, 1.3: 7.5, 1.4: 8, 1.5: 8.5, 1.6: 9} if betavalue < 1: return betavsdiscountedrate[1] # Return the value for key 1 if key is below 1 elif betavalue > 1.6: return betavsdiscountedrate[1.6] # Return the value for key 1.6 if key is above 1.6 else: # Find the closest key to the given key closest_key = min(betavsdiscountedrate.keys(), key=lambda x: abs(x - betavalue)) # Get the corresponding value value = betavsdiscountedrate[closest_key] return value def calc_fairprice_CDF(ticker): import yfinance as yf yfobj = yf.Ticker(ticker) #calculate eps growing next 5 years EPSnext5Y = yfobj.get_info()['trailingPE'] / yfobj.get_info()['trailingPegRatio'] years = 10 # cashflowinitial = yfobj.get_info()['operatingCashflow'] cashflowlst=[] cashflow = cashflowinitial for i in range(1,years+1): cashflow = cashflow*(1+EPSnext5Y/100) cashflowlst.append(cashflow) try: discountedrate = lookup_discountedrate(yfobj.get_info()['beta']) except: discountedrate = 5 discountedfactorlst =[] discountedvaluelst=[] discountedfactor =1 for i in range(1,years+1): discountedfactor =( 1 / (1+ discountedrate/100)**i) discountedfactorlst.append(discountedfactor) discountedvalue = discountedfactor * cashflowlst[i-1] discountedvaluelst.append(discountedvalue) PV10yearsCashFlow =0 for i in range(0,years): PV10yearsCashFlow += discountedvaluelst[i] #intrinsic value before cash/debt intrinsicvaluebeforecashdebt = PV10yearsCashFlow / yfobj.get_info()['sharesOutstanding'] debtpershare = yfobj.get_info()['totalDebt'] / yfobj.get_info()['sharesOutstanding'] cashpershare = yfobj.get_info()['totalCash'] / yfobj.get_info()['sharesOutstanding'] intrinsicvalue = intrinsicvaluebeforecashdebt + cashpershare - debtpershare previousClose = yfobj.get_info()['previousClose'] deviation = 100*(intrinsicvalue - previousClose) / previousClose # return intrinsicvalue , previousClose , deviation return pn.Row(pn.widgets.StaticText(name='fairprice_CDF', value=str(round(intrinsicvalue,1))) ,pn.widgets.StaticText(name='deviation', value=str(round(deviation,2))) ) def calc_fairprice_DnetP(ticker): import yfinance as yf yfobj = yf.Ticker(ticker) #calculate eps growing next 5 years EPSnext5Y = yfobj.get_info()['trailingPE'] / yfobj.get_info()['trailingPegRatio'] years = 5 # cashflowinitial = yfobj.get_info()['netIncomeToCommon'] cashflowlst=[] cashflow = cashflowinitial for i in range(1,years+1): cashflow = cashflow*(1+EPSnext5Y/100) cashflowlst.append(cashflow) try: discountedrate = lookup_discountedrate(yfobj.get_info()['beta']) except: discountedrate = 5 discountedfactorlst =[] discountedvaluelst=[] discountedfactor =1 for i in range(1,years+1): discountedfactor =( 1 / (1+ discountedrate/100)**i) discountedfactorlst.append(discountedfactor) discountedvalue = discountedfactor * cashflowlst[i-1] discountedvaluelst.append(discountedvalue) PV10yearsCashFlow =0 for i in range(0,years): PV10yearsCashFlow += discountedvaluelst[i] #intrinsic value before cash/debt intrinsicvaluebeforecashdebt = PV10yearsCashFlow / yfobj.get_info()['sharesOutstanding'] debtpershare = yfobj.get_info()['totalDebt'] / yfobj.get_info()['sharesOutstanding'] cashpershare = yfobj.get_info()['totalCash'] / yfobj.get_info()['sharesOutstanding'] intrinsicvalue = intrinsicvaluebeforecashdebt + cashpershare - debtpershare previousClose = yfobj.get_info()['previousClose'] intrinsicvalue= intrinsicvalue + previousClose deviation = 100*(intrinsicvalue - previousClose) / previousClose # return intrinsicvalue , previousClose , deviation return pn.Row(pn.widgets.StaticText(name='fairprice_DnetP', value=str(round(intrinsicvalue,1))) , pn.widgets.StaticText(name='deviation', value=str(round(deviation,2))) ) # tickers = ['AAPL', 'META', 'GOOG', 'IBM', 'MSFT','NKE','DLTR','DG'] # ticker = pn.widgets.Select(name='Ticker', options=tickers) tickers = pd.read_csv('tickers.csv').Ticker.to_list() ticker = pn.widgets.AutocompleteInput(name='Ticker', options=tickers , placeholder='Write Ticker here همین جا') ticker.value = "AAPL" window = pn.widgets.IntSlider(name='Window Size', value=50, start=5, end=1000, step=5) window2 = pn.widgets.IntSlider(name='Window Size2', value=150, start=5, end=1000, step=5) # Create a DatePicker widget with a minimum date of 2000-01-01 date_start = pn.widgets.DatePicker( name ="Start Date", description='Select a Date', start= date(2000, 1, 1) ) date_end = pn.widgets.DatePicker( name ="End Date",# value=datetime(2000, 1, 1), description='Select a Date', end= date.today() #date(2023, 9, 1) ) date_start.value = date(2010,1,1) date_end.value = date.today() pn.Row( pn.Column( ticker, window , window2, date_start , date_end), # pn.bind(calc_fairprice_CDF,ticker), # pn.bind(calc_fairprice_DnetP,ticker)), # pn.panel(pn.bind(get_hvplot, ticker, "2010-01-01","2023-09-01","1d")) #, sizing_mode='stretch_width') pn.panel(pn.bind(get_hvplot, ticker, date_start , date_end,"1d",window,window2)), #, sizing_mode='stretch_width') pn.panel(pn.bind(get_income_hvplot, ticker)) #, sizing_mode='stretch_width') ).servable(title="Under Valued Screener- Linear Regression")