import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import os # Obtener el token de acceso desde las variables de entorno hf_token = os.getenv("HF_TOKEN") model_name = "epfl-llm/meditron-7b" tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token) # Función para generar respuesta del modelo def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs.input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Configurar la interfaz de Gradio def chat(paciente_input): prompt = f"Paciente: {paciente_input}\nDoctor:" response = generate_response(prompt) return response iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Consulta Médica con Meditron-7B") iface.launch()