import gradio as gr from fastai.vision.all import load_learner # Custom CSS for the app (remove background color from examples) custom_css = """ body { background-color: #1E1E1E; color: #F5F5F5; } .gradio-container { max-width: 800px; margin: auto; } .input-panel, .output-panel { background-color: #2E2E2E; border: 2px solid #00BFFF; border-radius: 10px; box-shadow: 0 0 10px #00BFFF; padding: 20px; margin: 10px; } button { background: linear-gradient(90deg, #00BFFF, #FF6B6B); border: none; color: #F5F5F5; padding: 2px 5px; border-radius: 2px; cursor: pointer; } button:hover { box-shadow: 0 0 10px #00BFFF; } """ def classify_img(img) -> dict: """helper function to generate predictions""" lbls = ['Cat', 'Dog'] preds, idx, probs = model.predict(img) return dict(zip(lbls, map(float, probs))) # load model model = load_learner('model_2_ep_new_data.pkl') # build app image = gr.Image() label = gr.Label() examples = './inf_cs/' app = gr.Interface(fn = classify_img, inputs = image, outputs = label, examples = examples, theme = 'earneleh/paris', css = custom_css, examples_per_page = 7, flagging_mode = 'never', clear_btn = None) app.launch() # app.close()