# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import math from typing import List, Optional, Tuple from flash_attn import flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from .components import RMSNorm def modulate(x, scale): return x * (1 + scale.unsqueeze(1)) ############################################################################# # Embedding Layers for Timesteps and Class Labels # ############################################################################# class ParallelTimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear( frequency_embedding_size, hidden_size, bias=True, ), nn.SiLU(), nn.Linear( hidden_size, hidden_size, bias=True, ), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( device=t.device ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq.to(self.mlp[0].weight.dtype)) return t_emb class ParallelLabelEmbedder(nn.Module): r"""Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = int(dropout_prob > 0) self.embedding_table = nn.Embedding( num_classes + use_cfg_embedding ) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob drop_ids = drop_ids.cuda() drop_ids = drop_ids.to(labels.device) else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings ############################################################################# # Core NextDiT Model # ############################################################################# class Attention(nn.Module): """Multi-head attention module.""" def __init__( self, dim: int, n_heads: int, n_kv_heads: Optional[int], qk_norm: bool, y_dim: int, ): """ Initialize the Attention module. Args: dim (int): Number of input dimensions. n_heads (int): Number of heads. n_kv_heads (Optional[int]): Number of kv heads, if using GQA. """ super().__init__() self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads self.n_heads = n_heads self.n_kv_heads = self.n_kv_heads self.n_rep = self.n_heads // self.n_kv_heads self.head_dim = dim // n_heads self.wq = nn.Linear( dim, n_heads * self.head_dim, bias=False, ) self.wk = nn.Linear( dim, self.n_kv_heads * self.head_dim, bias=False, ) self.wv = nn.Linear( dim, self.n_kv_heads * self.head_dim, bias=False, ) if y_dim > 0: self.wk_y = nn.Linear( y_dim, self.n_kv_heads * self.head_dim, bias=False, ) self.wv_y = nn.Linear( y_dim, self.n_kv_heads * self.head_dim, bias=False, ) self.gate = nn.Parameter(torch.zeros([self.n_heads])) self.wo = nn.Linear( n_heads * self.head_dim, dim, bias=False, ) if qk_norm: self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim) self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim) if y_dim > 0: self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim) else: self.ky_norm = nn.Identity() else: self.q_norm = self.k_norm = nn.Identity() self.ky_norm = nn.Identity() # for proportional attention computation self.base_seqlen = None self.proportional_attn = False @staticmethod def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): """ Reshape frequency tensor for broadcasting it with another tensor. This function reshapes the frequency tensor to have the same shape as the target tensor 'x' for the purpose of broadcasting the frequency tensor during element-wise operations. Args: freqs_cis (torch.Tensor): Frequency tensor to be reshaped. x (torch.Tensor): Target tensor for broadcasting compatibility. Returns: torch.Tensor: Reshaped frequency tensor. Raises: AssertionError: If the frequency tensor doesn't match the expected shape. AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions. """ ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) @staticmethod def apply_rotary_emb( x_in: torch.Tensor, freqs_cis: torch.Tensor, ) -> torch.Tensor: """ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are returned as real tensors. Args: x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings. freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials. Returns: Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. """ with torch.cuda.amp.autocast(enabled=False): x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2)) freqs_cis = freqs_cis.unsqueeze(2) x_out = torch.view_as_real(x * freqs_cis).flatten(3) return x_out.type_as(x_in) # copied from huggingface modeling_llama.py def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k, ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k, ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), indices_k, ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) def forward( self, x: torch.Tensor, x_mask: torch.Tensor, freqs_cis: torch.Tensor, y: torch.Tensor, y_mask: torch.Tensor, ) -> torch.Tensor: """ Args: x: x_mask: freqs_cis: y: y_mask: Returns: """ bsz, seqlen, _ = x.shape xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) dtype = xq.dtype xq = self.q_norm(xq) xk = self.k_norm(xk) xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim) xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim) xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim) xq = Attention.apply_rotary_emb(xq, freqs_cis=freqs_cis) xk = Attention.apply_rotary_emb(xk, freqs_cis=freqs_cis) xq, xk = xq.to(dtype), xk.to(dtype) if self.proportional_attn: softmax_scale = math.sqrt(math.log(seqlen, self.base_seqlen) / self.head_dim) else: softmax_scale = math.sqrt(1 / self.head_dim) if dtype in [torch.float16, torch.bfloat16]: # begin var_len flash attn ( query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens, ) = self._upad_input(xq, xk, xv, x_mask, seqlen) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=0.0, causal=False, softmax_scale=softmax_scale, ) output = pad_input(attn_output_unpad, indices_q, bsz, seqlen) # end var_len_flash_attn else: output = ( F.scaled_dot_product_attention( xq.permute(0, 2, 1, 3), xk.permute(0, 2, 1, 3), xv.permute(0, 2, 1, 3), attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1), scale=softmax_scale, ) .permute(0, 2, 1, 3) .to(dtype) ) if hasattr(self, "wk_y"): yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim) yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim) n_rep = self.n_heads // self.n_kv_heads if n_rep >= 1: yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) output_y = F.scaled_dot_product_attention( xq.permute(0, 2, 1, 3), yk.permute(0, 2, 1, 3), yv.permute(0, 2, 1, 3), y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1), ).permute(0, 2, 1, 3) output_y = output_y * self.gate.tanh().view(1, 1, -1, 1) output = output + output_y output = output.flatten(-2) return self.wo(output) class FeedForward(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int, ffn_dim_multiplier: Optional[float], ): """ Initialize the FeedForward module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. Attributes: w1 (nn.Linear): Linear transformation for the first layer. w2 (nn.Linear): Linear transformation for the second layer. w3 (nn.Linear): Linear transformation for the third layer. """ super().__init__() hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = nn.Linear( dim, hidden_dim, bias=False, ) self.w2 = nn.Linear( hidden_dim, dim, bias=False, ) self.w3 = nn.Linear( dim, hidden_dim, bias=False, ) # @torch.compile def _forward_silu_gating(self, x1, x3): return F.silu(x1) * x3 def forward(self, x): return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) class TransformerBlock(nn.Module): def __init__( self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, qk_norm: bool, y_dim: int, ) -> None: """ Initialize a TransformerBlock. Args: layer_id (int): Identifier for the layer. dim (int): Embedding dimension of the input features. n_heads (int): Number of attention heads. n_kv_heads (Optional[int]): Number of attention heads in key and value features (if using GQA), or set to None for the same as query. multiple_of (int): ffn_dim_multiplier (float): norm_eps (float): Attributes: n_heads (int): Number of attention heads. dim (int): Dimension size of the model. head_dim (int): Dimension size of each attention head. attention (Attention): Attention module. feed_forward (FeedForward): FeedForward module. layer_id (int): Identifier for the layer. attention_norm (RMSNorm): Layer normalization for attention output. ffn_norm (RMSNorm): Layer normalization for feedforward output. """ super().__init__() self.dim = dim self.head_dim = dim // n_heads self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim) self.feed_forward = FeedForward( dim=dim, hidden_dim=4 * dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, ) self.layer_id = layer_id self.attention_norm1 = RMSNorm(dim, eps=norm_eps) self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) self.attention_norm2 = RMSNorm(dim, eps=norm_eps) self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear( min(dim, 1024), 4 * dim, bias=True, ), ) self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps) def forward( self, x: torch.Tensor, x_mask: torch.Tensor, freqs_cis: torch.Tensor, y: torch.Tensor, y_mask: torch.Tensor, adaln_input: Optional[torch.Tensor] = None, ): """ Perform a forward pass through the TransformerBlock. Args: x (torch.Tensor): Input tensor. freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. Returns: torch.Tensor: Output tensor after applying attention and feedforward layers. """ if adaln_input is not None: scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2( self.attention( modulate(self.attention_norm1(x), scale_msa), x_mask, freqs_cis, self.attention_y_norm(y), y_mask, ) ) x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2( self.feed_forward( modulate(self.ffn_norm1(x), scale_mlp), ) ) else: x = x + self.attention_norm2( self.attention( self.attention_norm1(x), x_mask, freqs_cis, self.attention_y_norm(y), y_mask, ) ) x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x))) return x class FinalLayer(nn.Module): """ The final layer of NextDiT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm( hidden_size, elementwise_affine=False, eps=1e-6, ) self.linear = nn.Linear( hidden_size, patch_size * patch_size * out_channels, ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear( min(hidden_size, 1024), hidden_size, ), ) def forward(self, x, c): scale = self.adaLN_modulation(c) x = modulate(self.norm_final(x), scale) x = self.linear(x) return x class NextDiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, patch_size: int = 2, in_channels: int = 4, dim: int = 4096, n_layers: int = 32, n_heads: int = 32, n_kv_heads: Optional[int] = None, multiple_of: int = 256, ffn_dim_multiplier: Optional[float] = None, norm_eps: float = 1e-5, learn_sigma: bool = True, qk_norm: bool = False, cap_feat_dim: int = 5120, scale_factor: float = 1.0, ) -> None: super().__init__() self.learn_sigma = learn_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.patch_size = patch_size self.x_embedder = nn.Linear( in_features=patch_size * patch_size * in_channels, out_features=dim, bias=True, ) nn.init.constant_(self.x_embedder.bias, 0.0) self.t_embedder = ParallelTimestepEmbedder(min(dim, 1024)) self.cap_embedder = nn.Sequential( nn.LayerNorm(cap_feat_dim), nn.Linear( cap_feat_dim, min(dim, 1024), bias=True, ), ) self.layers = nn.ModuleList( [ TransformerBlock( layer_id, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, cap_feat_dim, ) for layer_id in range(n_layers) ] ) self.final_layer = FinalLayer(dim, patch_size, self.out_channels) assert (dim // n_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4" self.freqs_cis = NextDiT.precompute_freqs_cis( dim // n_heads, 384, scale_factor=scale_factor, ) self.dim = dim self.n_heads = n_heads self.scale_factor = scale_factor self.pad_token = nn.Parameter(torch.empty(dim)) nn.init.normal_(self.pad_token, std=0.02) def unpatchify(self, x: torch.Tensor, img_size: List[Tuple[int, int]], return_tensor=False) -> List[torch.Tensor]: """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ pH = pW = self.patch_size if return_tensor: H, W = img_size[0] B = x.size(0) L = (H // pH) * (W // pW) x = x[:, :L].view(B, H // pH, W // pW, pH, pW, self.out_channels) x = x.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3) return x else: imgs = [] for i in range(x.size(0)): H, W = img_size[i] L = (H // pH) * (W // pW) imgs.append( x[i][:L] .view(H // pH, W // pW, pH, pW, self.out_channels) .permute(4, 0, 2, 1, 3) .flatten(3, 4) .flatten(1, 2) ) return imgs def patchify_and_embed( self, x: List[torch.Tensor] | torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: self.freqs_cis = self.freqs_cis.to(x[0].device) if isinstance(x, torch.Tensor): pH = pW = self.patch_size B, C, H, W = x.size() x = x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 1, 3, 5).flatten(3) x = self.x_embedder(x) x = x.flatten(1, 2) mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device) return ( x, mask, [(H, W)] * B, self.freqs_cis[: H // pH, : W // pW].flatten(0, 1).unsqueeze(0), ) else: pH = pW = self.patch_size x_embed = [] freqs_cis = [] img_size = [] l_effective_seq_len = [] for img in x: C, H, W = img.size() item_freqs_cis = self.freqs_cis[: H // pH, : W // pW] freqs_cis.append(item_freqs_cis.flatten(0, 1)) img_size.append((H, W)) img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 0, 2, 4).flatten(2) img = self.x_embedder(img) img = img.flatten(0, 1) l_effective_seq_len.append(len(img)) x_embed.append(img) max_seq_len = max(l_effective_seq_len) mask = torch.zeros(len(x), max_seq_len, dtype=torch.int32, device=x[0].device) padded_x_embed = [] padded_freqs_cis = [] for i, (item_embed, item_freqs_cis, item_seq_len) in enumerate( zip(x_embed, freqs_cis, l_effective_seq_len) ): item_embed = torch.cat( [ item_embed, self.pad_token.view(1, -1).expand(max_seq_len - item_seq_len, -1), ], dim=0, ) item_freqs_cis = torch.cat( [ item_freqs_cis, item_freqs_cis[-1:].expand(max_seq_len - item_seq_len, -1), ], dim=0, ) padded_x_embed.append(item_embed) padded_freqs_cis.append(item_freqs_cis) mask[i][:item_seq_len] = 1 x_embed = torch.stack(padded_x_embed, dim=0) freqs_cis = torch.stack(padded_freqs_cis, dim=0) return x_embed, mask, img_size, freqs_cis def forward(self, x, t, cap_feats, cap_mask): """ Forward pass of NextDiT. t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ x_is_tensor = isinstance(x, torch.Tensor) x, mask, img_size, freqs_cis = self.patchify_and_embed(x) freqs_cis = freqs_cis.to(x.device) t = self.t_embedder(t) # (N, D) cap_mask_float = cap_mask.float().unsqueeze(-1) cap_feats_pool = (cap_feats * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1) cap_feats_pool = cap_feats_pool.to(cap_feats) cap_emb = self.cap_embedder(cap_feats_pool) adaln_input = t + cap_emb cap_mask = cap_mask.bool() for layer in self.layers: x = layer(x, mask, freqs_cis, cap_feats, cap_mask, adaln_input=adaln_input) x = self.final_layer(x, adaln_input) x = self.unpatchify(x, img_size, return_tensor=x_is_tensor) if self.learn_sigma: if x_is_tensor: x, _ = x.chunk(2, dim=1) else: x = [_.chunk(2, dim=0)[0] for _ in x] return x def forward_with_cfg( self, x, t, cap_feats, cap_mask, cfg_scale, scale_factor=1.0, scale_watershed=1.0, base_seqlen: Optional[int] = None, proportional_attn: bool = False, ): """ Forward pass of NextDiT, but also batches the unconditional forward pass for classifier-free guidance. """ # # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb self.freqs_cis = NextDiT.precompute_freqs_cis( self.dim // self.n_heads, 384, scale_factor=scale_factor, scale_watershed=scale_watershed, timestep=t[0].item(), ) if proportional_attn: assert base_seqlen is not None for layer in self.layers: layer.attention.base_seqlen = base_seqlen layer.attention.proportional_attn = proportional_attn else: for layer in self.layers: layer.attention.base_seqlen = None layer.attention.proportional_attn = proportional_attn half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self(combined, t, cap_feats, cap_mask) # For exact reproducibility reasons, we apply classifier-free guidance on only # three channels by default. The standard approach to cfg applies it to all channels. # This can be done by uncommenting the following line and commenting-out the line following that. # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) @staticmethod def precompute_freqs_cis( dim: int, end: int, theta: float = 10000.0, scale_factor: float = 1.0, scale_watershed: float = 1.0, timestep: float = 1.0, ): """ Precompute the frequency tensor for complex exponentials (cis) with given dimensions. This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64 data type. Args: dim (int): Dimension of the frequency tensor. end (int): End index for precomputing frequencies. theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. Returns: torch.Tensor: Precomputed frequency tensor with complex exponentials. """ if timestep < scale_watershed: linear_factor = scale_factor ntk_factor = 1.0 else: linear_factor = 1.0 ntk_factor = scale_factor theta = theta * ntk_factor freqs = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float().cuda() / dim)) / linear_factor timestep = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore freqs = torch.outer(timestep, freqs).float() # type: ignore freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 freqs_cis_h = freqs_cis.view(end, 1, dim // 4, 1).repeat(1, end, 1, 1) freqs_cis_w = freqs_cis.view(1, end, dim // 4, 1).repeat(end, 1, 1, 1) freqs_cis = torch.cat([freqs_cis_h, freqs_cis_w], dim=-1).flatten(2) return freqs_cis def parameter_count(self) -> int: total_params = 0 def _recursive_count_params(module): nonlocal total_params for param in module.parameters(recurse=False): total_params += param.numel() for submodule in module.children(): _recursive_count_params(submodule) _recursive_count_params(self) return total_params def get_fsdp_wrap_module_list(self) -> List[nn.Module]: return list(self.layers) ############################################################################# # NextDiT Configs # ############################################################################# def NextDiT_2B_patch2(**kwargs): return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, **kwargs) def NextDiT_2B_GQA_patch2(**kwargs): return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, n_kv_heads=8, **kwargs)