import torch import numpy as np from PIL import Image from transformers import DPTFeatureExtractor, DPTForDepthEstimation device = None depth_estimator = None feature_extractor = None def init(): global device, depth_estimator, feature_extractor device = "cuda" if torch.cuda.is_available() else "cpu" print("Initializing depth estimator...") depth_estimator = DPTForDepthEstimation.from_pretrained( "Intel/dpt-hybrid-midas").to(device) feature_extractor = DPTFeatureExtractor.from_pretrained( "Intel/dpt-hybrid-midas") def get_depth_map(image): original_size = image.size image = feature_extractor( images=image, return_tensors="pt").pixel_values.to(device) with torch.no_grad(), torch.autocast(device): depth_map = depth_estimator(image).predicted_depth depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=original_size[::-1], mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) image = torch.cat([depth_map] * 3, dim=1) image = image.permute(0, 2, 3, 1).cpu().numpy()[0] image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) return image