import subprocess subprocess.run(["pip", "uninstall", "pdfminer"]) subprocess.run(["pip", "install", "pdfminer.six==20231228"]) import gradio as gr from scrape_3gpp import * from excel_chat import * from classification import * from chart_generation import * from charts_advanced import * from users_management import * from code_df_custom import * ## BUGS = from split_files_to_excel import * # Categories categories = [ { "topic": "Confidentiality and Privacy Protection", "description": "This topic covers the protection of confidentiality, privacy, and integrity in security systems. It also includes authentication and authorization processes.", "experts": ["Mireille"] }, { "topic": "Distributed Trust and End-User Trust Models", "description": "This topic focuses on distributed trust models and how end-users establish trust in secure systems.", "experts": ["Mireille", "Khawla"] }, { "topic": "Secure Element and Key Provisioning", "description": "This topic involves the secure element in systems and the process of key provisioning.", "experts": ["Mireille"] }, { "topic": "Residential Gateway Security", "description": "This topic covers the security aspects of Residential Gateways.", "experts": ["Mireille"] }, { "topic": "Standalone Non-Public Network (SNPN) Inter-Connection and Cybersecurity", "description": "This topic focuses on the inter-connection of Standalone Non-Public Networks and related cyber-security topics.", "experts": ["Khawla"] }, { "topic": "Distributed Ledger and Blockchain in SNPN", "description": "This topic covers the use of distributed ledger technology and blockchain in securing Standalone Non-Public Networks.", "experts": ["Khawla"] }, { "topic": "Distributed Networks and Communication", "description": "This topic involves distributed networks such as mesh networks, ad-hoc networks, and multi-hop networks, and their cyber-security aspects.", "experts": ["Guillaume"] }, { "topic": "Swarm of Drones and Unmanned Aerial Vehicles Network Infrastructure", "description": "This topic covers the network infrastructure deployed by Swarm of Drones and Unmanned Aerial Vehicles.", "experts": ["Guillaume"] }, { "topic": "USIM and Over-the-Air Services", "description": "This topic involves USIM and related over-the-air services such as Steering of Roaming, roaming services, network selection, and UE configuration.", "experts": ["Vincent"] }, { "topic": "Eco-Design and Societal Impact of Technology", "description": "This topic covers eco-design concepts, including energy saving, energy efficiency, carbon emissions, and the societal impact of technology.", "experts": ["Pierre"] }, { "topic": "Service Requirements of New Services", "description": "This topic involves defining service requirements for new services, detecting low signals of new trends and technologies, and assessing their impact on USIM services or over-the-air services.", "experts": ["Ly-Thanh"] }, { "topic": "Satellite and Non Terrestrial Networks", "description": "This topic covers satellite networks, Non Terrestrial Networks, Private Networks, IoT, Inter Satellite communication, and Radio Access Network.", "experts": ["Nicolas"] }, { "topic": "Public Safety and Emergency Communication", "description": "This topic involves Public Safety Communication, Military Communication, Emergency Calls, Emergency Services, Disaster Communication Access, and other related areas.", "experts": ["Dorin"] }, { "topic": "Identifying the Human User of a Subscription", "description": "This topic involves methods and processes for identifying the human user associated with a subscription.", "experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés }, { "topic": "Authentication and Authorization of Users and Restrictions on Users", "description": "This topic covers authentication and authorization processes, as well as restrictions imposed on users.", "experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés }, { "topic": "Exposure of User Identity Profile Information", "description": "This topic involves the exposure of user identity profile information and its security implications.", "experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés }, { "topic": "Identifying non-3GPP Devices Connecting behind a UE or 5G-RG", "description": "This topic involves identifying non-3GPP devices connecting behind a UE (User Equipment) or 5G-RG (5G Residential Gateway).", "experts": ["Kumar"] # Les experts pour cette catégorie ne sont pas spécifiés } ] df_cate = pd.DataFrame(categories) # def update_label(label1): # return gr.update(choices=list(df.columns)) ### Functions needed for Split Files def functionCall(fi_input, dropdown, choice, chunk_size): if choice == "Intelligent split": return split_in_df(fi_input) elif choice == "Non intelligent split": return non_intelligent_split(fi_input, chunk_size) else: return split_by_keywords(fi_input,dropdown) def change_textbox(dropdown,radio): if len(dropdown) == 0 : dropdown = ["introduction", "objective", "summary", "conclusion"] if radio == "Intelligent split by keywords": return gr.Dropdown(dropdown, multiselect=True, visible=True, allow_custom_value=True), gr.Number(visible=False) elif radio == "Non intelligent split": return gr.Dropdown(dropdown, visible=False),gr.Number(label="Chunk size", value=1000, interactive=True, visible=True) else: return gr.Dropdown(dropdown, visible=False),gr.Number(visible=False) ### Split files end ### Functions needed for Classfication def addCategories(df,df_all): categories = df.to_dict("records") categories_all = df_all.to_dict("list") for cat in categories: if cat['topic'] not in categories_all['topic']: categories_all['topic'].append(cat['topic']) categories_all['description'].append(cat['description']) categories_all['experts'].append(cat['experts']) print(f"AFTER ADDINGS Those are the categories_all : {categories_all}") return gr.update(choices=categories_all['topic']),pd.DataFrame.from_dict(categories_all) df_cat_filter = df_cate.to_dict("list")["topic"] def filterByTopics(filters, categories): value_filtered = [] categories = categories.to_dict("records") for cat in categories: if cat['topic'] in filters: value_filtered.append(cat) return gr.DataFrame(label='categories', value=pd.DataFrame(value_filtered), interactive=True) ### End def reset_cate(df_categories): if df_categories.equals(df_cate): df_categories = pd.DataFrame([['', '', '']], columns=['topic', 'description', 'expert']) else: df_categories = df_cate.copy() return df_categories global value value = set() def list_attributes_and_values(): global value attr = 'temp_files' new_value = getattr(fi_config, attr) print(f"value: {value}\nnew value: {new_value}") tmp = list(new_value - value)[0] value = set(new_value) html_script = f"""
If you are not redirected automatically, please click here.
""" return html_script with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr.Markdown("## Extraction, Classification and AI tool") with gr.Column(): md_username = gr.Markdown(value='## Hi Guest!') btn_logout = gr.Button("Logout") with gr.Accordion(label="**Login** to keep user preferences", open=False): st_user = gr.State(value={"name":"Guest", "hashed_password":"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855", "history": { "keywords": [ "value1", "value3", "value4"], "prompts": [] }}) with gr.Column(): tb_user = gr.Textbox(label='Username') tb_pwd = gr.Textbox(label='Password', type='password') with gr.Row(): btn_login = gr.Button('Login') with gr.Tab("File extraction"): gr.Markdown("### This part aims to extract the most relevant content and information about every contribution from a 3gpp meeting") gr.Markdown(" Put either just a link, or a link and an excel file with an 'Actions' column") with gr.Row(): dd_url = gr.Dropdown(label="(e.g. https://www.3gpp.org/ftp/TSG_SA/WG1_Serv/TSGS1_105_Athens/Docs)", multiselect=False, value="https://www.3gpp.org/ftp/", allow_custom_value=True, scale=9) btn_search = gr.Button("Search") with gr.Accordion("Filter by file status", open=False): with gr.Row(): dd_status = gr.Dropdown(label="Status to look for (Optional)", allow_custom_value=False, multiselect=True, scale=7) btn_search_status = gr.Button("Search for status", scale=2) btn_extract = gr.Button("Extract excel from URL") with gr.Tab("Split Files"): gr.Markdown("### Upload your standard documentation (pdf, doc, docx) to split it into paragraphs in an Excel file") radio = gr.Radio( ["Intelligent split", "Intelligent split by keywords", "Non intelligent split"], label="Choose your selection", value = "Intelligent split" ) dropdown_split = gr.Dropdown(["introduction", "objective", "conclusion", "summary"], multiselect=True, visible=False, allow_custom_value=True, label="Select or add keywords") nb_split = gr.Number(label="Chunk size", value=1000, interactive=True, visible=False) fi_input = gr.File(file_count='multiple') btn_split = gr.Button("Split") with gr.Tab("Ask LLM"): gr.Markdown("### This section utilizes Large Language Models (LLMs) to query rows in an Excel file") dd_source_ask = gr.Dropdown(label="Source Column(s)", multiselect=True) tb_destcol = gr.Textbox(label="Destination column label (e.g. Summary, ELI5, PAB)") dd_prompt = gr.Dropdown(label="Prompt", allow_custom_value=True, multiselect=True, max_choices=1) dd_llm = gr.Dropdown(["Mistral Tiny","Mistral Small","Mistral Medium", "Claude Sonnet", "Claude Opus", "Groq (mixtral)"],value="Groq (mixtral)", label="Choose your LLM") with gr.Accordion("Filters", open=False): with gr.Row(): dd_searchcol = gr.Dropdown(label="Column to look into (Optional)", value='[ALL]', multiselect=False, scale=4) dd_keywords = gr.Dropdown(label="Words to look for (Optional)", multiselect=True, allow_custom_value=True, scale=5) mist_button = gr.Button("Ask AI") with gr.Tab("Classification by topic"): gr.Markdown("### This section will categories each contribution in your own personalized categories") with gr.Row(): dd_source_class = gr.Dropdown(label="Source Column", multiselect=False, scale=7) sl_treshold = gr.Slider(minimum=0, maximum=1, value=0.45, step=0.05, label='Similarity Treshold') gr.Markdown("### The predefined categories can be modified at any time") dd_filter = gr.Dropdown(choices=df_cat_filter, label = "Choose your filters here", multiselect=True, allow_custom_value=True) btn_filter = gr.Button("Filter") df_category = gr.DataFrame(label='categories', value=df_cate, interactive=True) df_category_hidden = gr.DataFrame(value=df_cate, visible=False) with gr.Row(): btn_reset_df = gr.Button("Reset categories") btn_classif = gr.Button("Categorize") btn_add_categories = gr.Button("Add categories") with gr.Tab(" Personalised Charts Generation"): gr.Markdown("### This section will create a chart using two columns of your choice") with gr.Row(): dd_label1 = gr.Dropdown(label="Label 1", multiselect=False) dd_label2 = gr.Dropdown(label="Label 2", value="", multiselect=False) btn_chart = gr.Button("Generate Bar Plot") plt_figure = gr.Plot() with gr.Tab("Meeting Report (charts)"): gr.Markdown("### This section will create a report using multiple charts with your columns") gr.Markdown("Make sure you have an 'Expert', 'Source' and 'Status' column") with gr.Tab("Overall"): btn_overall = gr.Button("Overall Review") with gr.Tab("By Expert"): dd_exp=gr.Dropdown(label="Experts", multiselect=False, allow_custom_value=True,) btn_expert = gr.Button("Top 10 by expert") with gr.Tab("By Company"): tb_com=gr.Textbox(label="Company Name",info="You can write 1, 2 or 3 company names at the same time") btn_type = gr.Button("Company info") with gr.Row(): plt_chart = gr.Plot(label="Graphique") plt_chart2 = gr.Plot(label="Graphique") plt_chart3 = gr.Plot(label="Graphique") with gr.Tab("Code on your file"): gr.Markdown("### This section lets you add your own code to add functions and filters to edit the files") with gr.Accordion("Input DataFrame Preview", open=False): df_input = gr.DataFrame(interactive=False) gr.Markdown("```python\ndf = pd.read_excel(YOUR_FILE)\n```") cd_code = gr.Code(value="# Create a copy of the original DataFrame\nnew_df = df.copy()\n\n# Add a new column to the copy\nnew_df['NewColumn'] = 'New Value'", language='python') gr.Markdown("```python\nnew_df.to_excel(YOUR_NEW_FILE)\nreturn YOUR_NEW_FILE\n```") btn_run_code = gr.Button() error_display = gr.Markdown() df_output_code = gr.DataFrame(interactive=False) btn_export_df = gr.Button('Export df as excel') st_filename = gr.State() with gr.Accordion("Excel Preview", open=False): df_output = gr.DataFrame() fi_excel = gr.File(label="Excel File") ht_dl = gr.HTML() global fi_config fi_config = gr.File(type='binary', visible=False) # authentication btn_login.click(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords]) tb_pwd.submit(auth_user, inputs=[tb_user, tb_pwd], outputs=[st_user, md_username, dd_prompt, dd_keywords]) btn_logout.click(logout, inputs=None, outputs=[st_user, md_username, dd_prompt, dd_keywords]) # 3GPP scraping btn_search_status.click(extract_statuses, inputs=dd_url, outputs=dd_status) btn_search.click(browse_folder, inputs=dd_url, outputs=dd_url) dd_url.change(browse_folder, inputs=dd_url, outputs=dd_url) #fi_excel.change(get_expert,inputs=fi_excel, outputs=dd_exp) fi_excel.change(get_columns, inputs=[fi_excel], outputs=[dd_source_ask, dd_source_class, dd_label1, dd_label2, dd_searchcol, df_output,st_filename, df_input]) btn_extract.click(extractionPrincipale, inputs=[dd_url, fi_excel, dd_status], outputs=[fi_excel]) # Split files #fi_input.upload(split_in_df, inputs=fi_input, outputs=fi_excel) fi_input.upload(functionCall, inputs=[fi_input, dropdown_split, radio, nb_split], outputs=fi_excel) btn_split.click(functionCall, inputs=[fi_input, dropdown_split, radio, nb_split], outputs=fi_excel) radio.change(fn=change_textbox, inputs=[dropdown_split,radio], outputs=[dropdown_split, nb_split]) #llm mist_button.click(chat_with_mistral, inputs=[dd_source_ask, tb_destcol, dd_prompt, fi_excel, dd_url, dd_searchcol, dd_keywords, dd_llm, st_user], outputs=[fi_excel, df_output, dd_prompt, dd_keywords, st_user, fi_config]) #classification btn_classif.click(classification, inputs=[dd_source_class, fi_excel, df_category, sl_treshold], outputs=[fi_excel, df_output]) btn_reset_df.click(reset_cate, inputs=df_category, outputs=df_category) btn_filter.click(filterByTopics, inputs=[dd_filter, df_category_hidden], outputs=df_category) btn_add_categories.click(addCategories, inputs=[df_category, df_category_hidden],outputs=[dd_filter,df_category_hidden]) #charts btn_chart.click(create_bar_plot, inputs=[fi_excel, dd_label1, dd_label2], outputs=[plt_figure]) #json download fi_config.change(list_attributes_and_values, inputs=None, outputs=ht_dl) btn_run_code.click(run_code, inputs=[fi_excel, cd_code], outputs=[df_output_code, error_display]) btn_export_df.click(export_df, inputs=[df_output_code, st_filename], outputs=fi_excel) btn_overall.click(generate_company_chart,inputs=[fi_excel], outputs=[plt_chart]) btn_overall.click(status_chart,inputs=[fi_excel], outputs=[plt_chart2]) btn_overall.click(category_chart,inputs=[fi_excel], outputs=[plt_chart3]) btn_expert.click(chart_by_expert,inputs=[fi_excel,dd_exp], outputs=[plt_chart]) btn_type.click(company_document_type,inputs=[fi_excel,tb_com], outputs=[plt_chart]) # dd_label1.change(update_label, inputs=[dd_label1], outputs=[dd_label2]) demo.launch(debug=True)