import PyPDF2 import pdfplumber from pdfminer.high_level import extract_pages, extract_text from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure import re import torch import transformers from transformers import pipeline from datasets import load_dataset import soundfile as sf from IPython.display import Audio import numpy as np from datasets import load_dataset import sentencepiece as spm import os import tempfile import gradio as gr #reporting the created functions for the part 1 def text_extraction(element): line_text = element.get_text() line_formats = [] for text_line in element: if isinstance(text_line, LTTextContainer): for character in text_line: if isinstance(character, LTChar): line_formats.append(character.fontname) line_formats.append(character.size) format_per_line = list(set(line_formats)) return (line_text, format_per_line) def read_pdf(pdf_pathy): pdfFileObj = open(pdf_pathy, 'rb') pdfReaded = PyPDF2.PdfReader(pdfFileObj) text_per_pagy = {} for pagenum, page in enumerate(extract_pages(pdf_pathy)): print("Elaborating Page_" +str(pagenum)) pageObj = pdfReaded.pages[pagenum] page_text = [] line_format = [] page_content = [] pdf = pdfplumber.open(pdf_pathy) page_elements = [(element.y1, element) for element in page._objs] page_elements.sort(key=lambda a: a[0], reverse=True) for i,component in enumerate(page_elements): pos= component[0] element = component[1] if isinstance(element, LTTextContainer): (line_text, format_per_line) = text_extraction(element) page_text.append(line_text) line_format.append(format_per_line) page_content.append(line_text) dctkey = 'Page_'+str(pagenum) text_per_pagy[dctkey]= [page_text, line_format, page_content] pdfFileObj.close() return text_per_pagy def clean_text(text): # remove extra spaces text = re.sub(r'\s+', ' ', text) return text.strip() def extract_abstract(text_per_pagy): abstract_text = "" for page_num, page_text in text_per_pagy.items(): if page_text: page_text = page_text.replace("- ", "") start_index = page_text.find("Abstract") if start_index != -1: start_index += len("Abstract") + 1 end_markers = ["Introduction", "Summary", "Overview", "Background"] end_index = -1 for marker in end_markers: temp_index = page_text.find(marker, start_index) if temp_index != -1: end_index = temp_index break if end_index == -1: end_index = len(page_text) abstract = page_text[start_index:end_index].strip() abstract_text += " " + abstract break return abstract_text #let's define a main function that gets the uploaded file (pdf) to do the job def main_function(uploaded_filepath): #put a control to see if there is a file uploaded if uploaded_filepath is None: return "No file loaded", None #read and process the file according to read_pdf text_per_pagy = read_pdf(uploaded_filepath) #cleaning the text and getting the abstract using the 2 other functions for key, value in text_per_pagy.items(): cleaned_text = clean_text(' '.join(value[0])) text_per_pagy[key] = cleaned_text abstract_text = extract_abstract(text_per_pagy) #abstract the summary with my pipeline and model, deciding the length summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify") summary = summarizer(abstract_text, max_length=50, min_length=30, do_sample=False)[0]['summary_text'] #generating the audio from the text, with my pipeline and model synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) speech = synthesiser(summary, forward_params={"speaker_embeddings": speaker_embedding}) #saving the audio in a temporary file audio_file_path = "summary.wav" sf.write(audio_file_path, speech["audio"], samplerate=speech["sampling_rate"]) #the function returns the 2 pieces we need return summary, audio_file_path #let's communicate with gradio what it has to put in iface = gr.Interface( fn=main_function, inputs=gr.File(type="filepath"), outputs=[gr.Textbox(label="Summary Text"), gr.Audio(label="Summary Audio", type="filepath")] ) #launching the app if __name__ == "__main__": iface.launch()