import gradio as gr from PIL import Image as im_lib from PIL import ImageFilter from random import randint import numpy as np from keras import models from keras import layers from keras.layers import Layer, Input, concatenate, MaxPooling2D, Conv2D, Dense, Dropout, Flatten from keras import Model from sklearn.preprocessing import MinMaxScaler from scipy.fftpack import dct def crop_image(image): #Gradio takes image, and automatically converts into an ndarray. #This function will return a value which indicates whether the crop succeeded or not #and why it failed, if it did. It will also return the cropped image if succeeded, and the original one otherwise. #-1 indicates failure because of grayscale or non-RGB. #-2 indicates failure because image is too small to crop # 1 indicates success. if len(np.asarray(image).shape)!=3: #This is a grayscale image. return -1, image x_dim, y_dim = image.size if x_dim < 256 or y_dim < 256: return -2, image left, upper = randint(0, x_dim-256), randint(0, y_dim-256) right, lower = 256+left, 256+upper image = image.crop((left,upper,right,lower)) return 1, image def HPF_filter(image): return im_lib.fromarray(np.asarray(image)-np.asarray(image.filter(ImageFilter.GaussianBlur))) def final_image_array_single(image): cropped_key, image = crop_image(image) if cropped_key == 1: image_array = np.asarray(HPF_filter(image)) return image_array def create_model_single(model_weights_file = "single_channel_model_best_val_real_precision_weights"): try: recalled_model1 except NameError: pass else: del recalled_model1 recalled_model1 = models.Sequential() recalled_model1.add(layers.Conv2D( 32, (3,3), activation='relu', input_shape=(256,256,3,))) recalled_model1.add( layers.MaxPooling2D( (2,2), strides = 2 ) ) recalled_model1.add( layers.Conv2D(64, (3,3), activation='relu')) recalled_model1.add( layers.MaxPooling2D( (2,2), strides=2) ) recalled_model1.add( layers.Flatten() ) recalled_model1.add(layers.Dense(64, activation='relu')) recalled_model1.add(layers.Dense(14, activation='softmax')) recalled_model1.load_weights(model_weights_file) recalled_model1.compile(optimizer='adam', loss='categorical_crossentropy') return recalled_model1 model_test_single = create_model_single() def real_or_not_single(image, model = model_test_single): cropped_key, cropped_image = crop_image(image) if cropped_key == -1: return "This image cannot be processed as it is not RGB." elif cropped_key == -2: return "This image is too small to be processed." else: image_array = final_image_array_single(cropped_image) prediction_list = model.predict(image_array.reshape(1,256,256,3)) if np.argmax(prediction_list) == len(prediction_list[0]) - 1: return "This image is probably real." else: keywords = ["biggan", "crn", "cyclegan","deepfake","gaugan","imle","progan","san","seeingdark","stargan", "stylegan2", "stylegan", "whichfaceisreal"] return f"This image is probably fake and generated by {keywords[np.argmax(prediction_list)]}." def normalize_image(image,normalizing_factor=255): if image.mode == 'RGB': return np.asarray(image).reshape(image.size[0],image.size[1],3)/normalizing_factor if image.mode == 'L': return np.assarray(image)/normalizing_factor #combines the filters for each color channel as one image def highpassrgb(image): red, green, blue = image.split() return normalize_image(im_lib.merge(mode='RGB',bands=(red.filter(ImageFilter.Kernel((3,3),(0,-1,0,-1,4,-1,0,-1,0),1,0)), green.filter(ImageFilter.Kernel((3,3),(0,-1,0,-1,4,-1,0,-1,0),1,0)), blue.filter(ImageFilter.Kernel((3,3),(0,-1,0,-1,4,-1,0,-1,0),1,0))))) #grayscale discrete cosine transform def gdct(image): a = np.array(image.convert('L')) return dct(dct(a.T, norm='ortho').T, norm='ortho') #log-scaled and normalized gdct def normalized_gdct(image): array = gdct(image) sgn = np.sign(array) logscale = sgn*np.log(abs(array)+0.000000001) #symmetric log scale, shifted slightly to be defined at 0 scaler = MinMaxScaler() scaler.fit(array) return scaler.transform(logscale) def final_image_array_dual(image): cropped_key, image= crop_image(image) if cropped_key == 1: two_images = [normalized_gdct(image), highpassrgb(image)] return two_images def create_model_dual(model_weights_file = "dual_channel_model_best_val_real_precision_weights"): try: recalled_model2 except NameError: pass else: del recalled_model2 gdct_input = Input(shape=(256,256,1)) gdct_1 = Conv2D(filters=32,kernel_size=(3,3),activation='relu')(gdct_input) gdct_2 = MaxPooling2D(pool_size=(2,2),strides=2)(gdct_1) gdct_3 = Conv2D(filters=64,kernel_size=(3,3),activation='relu')(gdct_2) gdct_4 = MaxPooling2D(pool_size=(2,2),strides=2)(gdct_3) #highpass filter highpass_input = Input(shape=(256,256,3)) highpass_1 = Conv2D(filters=32,kernel_size=(3,3),activation='relu')(highpass_input) highpass_2 = MaxPooling2D(pool_size=(2,2),strides=2)(highpass_1) highpass_3 = Conv2D(filters=64,kernel_size=(3,3),activation='relu')(highpass_2) highpass_4 = MaxPooling2D(pool_size=(2,2),strides=2)(highpass_3) merged_1 = concatenate([gdct_4, highpass_4]) merged_2 = Flatten()(merged_1) merged_3 = Dense(units=64, activation='relu')(merged_2) multiclass= Dense(units=14, activation = 'softmax')(merged_3) #binary = Dense(units=1,activation='softmax')(merged_3) recalled_model2 = Model(inputs = [gdct_input,highpass_input], outputs = multiclass) recalled_model2.load_weights(model_weights_file) recalled_model2.compile(optimizer='adam', loss='categorical_crossentropy') return recalled_model2 model_test_dual = create_model_dual() def real_or_not_dual(image, model = model_test_dual): #must take an array cropped_key, cropped_image = crop_image(image) if cropped_key == -1: return "This image cannot be processed as it is not RGB." elif cropped_key == -2: return "This image is too small to be processed." else: image1, image2 = final_image_array_dual(cropped_image) prediction_list = model.predict([image1.reshape(1,256,256,1), image2.reshape(1,256,256,3)]) if np.argmax(prediction_list) == len(prediction_list[0]) - 1: return "This image is probably real." else: keywords = ["biggan", "crn", "cyclegan","deepfake","gaugan","imle","progan","san","seeingdark","stargan", "stylegan2", "stylegan", "whichfaceisreal"] return f"This image is probably fake and generated by {keywords[np.argmax(prediction_list)]}." interface1 = gr.Interface(fn = real_or_not_single, title = "AI or Real?", inputs = gr.Image(show_label = False, type = "pil"), outputs = "text", description = "
Upload your image and we will determine whether it's real or AI-generated using a Single Channel Neural Network.
Please flag any erroneous output.
", allow_flagging = "manual" ) interface2 = gr.Interface(fn = real_or_not_dual, title = "AI or Real?", inputs = gr.Image(show_label = False, type = "pil"), outputs = "text", description = "
Upload your image and we will determine whether it's real or AI-generated using a Dual Channel Neural Network.
Please flag any erroneous output.
", allow_flagging = "manual" ) demo = gr.TabbedInterface([interface1, interface2], ["Single Channel", "Dual Channel"]) demo.launch()